首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65篇
  免费   3篇
  国内免费   1篇
测绘学   10篇
大气科学   5篇
地球物理   16篇
地质学   25篇
海洋学   7篇
天文学   4篇
自然地理   2篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2018年   5篇
  2017年   6篇
  2016年   5篇
  2015年   8篇
  2014年   1篇
  2013年   6篇
  2012年   7篇
  2011年   2篇
  2010年   5篇
  2009年   3篇
  2008年   3篇
  2007年   2篇
  2002年   2篇
  2001年   1篇
  1999年   1篇
  1997年   1篇
  1995年   2篇
  1994年   2篇
  1992年   1篇
  1988年   1篇
排序方式: 共有69条查询结果,搜索用时 656 毫秒
11.
Anisotropy of magnetic susceptibility (AMS) is investigated in samples of Peralimala (PM) pluton (ca. 550 Ma) and adjacent gneiss, gabbro, mylonite and amphibolite from the Moyar Shear Zone (MSZ), Southern Granulite Terrane (SGT) with an aim to decipher the time-relationship between fabric development in the pluton and regional tectonics. Magnetic foliation recorded in the PM pluton is sub-parallel to the WNW-ESE striking MSZ. Magnetic foliation and lineation trajectories are sigmoidal and curve into the shear zone. A dextral sense of shear is deciphered from the trajectories, which is similar to that reported within the MSZ in some earlier studies. It is inferred that the PM pluton has developed post-emplacement deformation-fabric related to reactivation of the MSZ during Pan-African age. Based on the data and existing information about regional tectonics of the area, the possibility of the (a) PM pluton being a Deformed Alkali Rock and Carbonatite (DARC) and (b) MSZ marking an ancient suture zone, is discussed.  相似文献   
12.
Extreme climate events have been identified both in meteorological and long-term proxy records from the Indian summer monsoon (ISM) realm. However, the potential of palaeoclimate data for understanding mechanisms triggering climate extremes over long time scales has not been fully exploited. A distinction between proxies indicating climate change, environment, and ecosystem shift is crucial for enabling a comparison with forcing mechanisms (e.g. El-Niño Southern Oscillation). In this study we decouple these factors using data analysis techniques [multiplex recurrence network (MRN) and principal component analyses (PCA)] on multiproxy data from two lakes located in different climate regions – Lonar Lake (ISM dominated) and the high-altitude Tso Moriri Lake (ISM and westerlies influenced). Our results indicate that (i) MRN analysis, an indicator of changing environmental conditions, is associated with droughts in regions with a single climate driver but provides ambiguous results in regions with multiple climate/environmental drivers; (ii) the lacustrine ecosystem was ‘less sensitive’ to forcings during the early Holocene wetter periods; (iii) archives in climate zones with a single climate driver were most sensitive to regime shifts; (iv) data analyses are successful in identifying the timing of onset of climate change, and distinguishing between extrinsic and intrinsic (lacustrine) regime shifts by comparison with forcing mechanisms. Our results enable development of conceptual models to explain links between forcings and regional climate change that can be tested in climate models to provide an improved understanding of the ISM dynamics and their impact on ecosystems. © 2020 John Wiley & Sons, Ltd.  相似文献   
13.
Ground motions affected by directivity focusing at near-field stations contain distinct pulses in acceleration, velocity, and displacement histories. For the same Peak Ground Acceleration (PGA) and duration of shaking, ground motions with directivity pulses can generate much higher base shears, inter-storey drifts, and roof displacements in high-rise buildings as compared to the 1940 El Centro ground motion which does not contain these pulses. Also, the ductility demand can be much higher and the effectiveness of supplemental damping lower for pulse-like ground motions. This paper presents a simple interpretation of the response characteristics of three recorded and one synthetic near-field ground motions. It is seen that for pulse-like ground motions—similar to any other ground motion—the Peak values of Ground Acceleration, Velocity, and Displacement (PGA, PGV and PGD) are the key response parameters. Near-field ground motions with directivity effects tend to have high PGV/PGA ratio, which dramatically influences their response characteristics. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   
14.
The sustainability of water resources mainly depends on planning and management of land use; a small change in it may affect water yield largely, as both are linked through relevant hydrological processes, explicitly. However, human activities, especially a significant increase in population, in-migration and accelerated socio-economic activities, are constantly modifying the land use and land cover (LULC) pattern. The impact of such changes in LULC on the hydrological regime of a basin is of widespread concern and a great challenge to the water resource engineers. While studying these impacts, the issue that prevails is the selection of a hydrological model that may be able to accommodate spatial and temporal dynamics of the basin with higher accuracy. Therefore, in the present study, the capabilities of variable infiltration capacity hydrological model to hydrologically simulate the basin under varying LULC scenarios have been investigated. For the present analysis, the Pennar River Basin, Andhra Pradesh, which falls under a water scarce region in India, has been chosen. The water balance components such as runoff potential, evapotranspiration (ET) and baseflow of Pennar Basin have been simulated under different LULC scenarios to study the impact of change on hydrological regime of a basin. Majorly, increase in built-up (13.94% approx.) and decrease in deciduous forest cover (2.44%) are the significant changes observed in the basin during the last three decades. It was found that the impact of LULC change on hydrology is balancing out at basin scale (considering the entire basin, while routing the runoff at the basin outlet). Therefore, an analysis on spatial variation in each of the water balance components considered in the study was done at grid scale. It was observed that the impact of LULC is considerable spatially at grid level, and the maximum increase of 265 mm (1985–2005) and the decrease of 48 mm (1985–1995) in runoff generation at grid were estimated. On the contrary, ET component showed the maximum increase of 400 and decrease of 570 mm under different LULC change scenario. Similarly, in the base flow parameter, an increase of 70 mm and the decrease of 100 mm were observed. It was noticed that the upper basin is showing an increasing trend in almost all hydrological components as compared to the lower basin. Based on this basin scale study, it was concluded that change in the land cover alters the hydrology; however, it needs to be studied at finer spatial scale rather than the entire basin as a whole. The information like the spatial variation in hydrological components may be very useful for local authority and decision-makers to plan mitigation strategies accordingly.  相似文献   
15.
Snow physical properties, snow cover and glacier facies are important parameters which are used to quantify snowpack characteristics, glacier mass balance and seasonal snow and glacier melt. This study has been done using C-band synthetic aperture radar (SAR) data of Indian radar imaging satellite, radar imaging satellite-1 (RISAT)-1, to estimate the seasonal snow cover and retrieve snow physical properties (snow wetness and snow density), and glacier radar zones or facies classification in parts of North West Himalaya (NWH), India. Additional SAR data used are of Radarsat-2 (RS-2) satellite, which was used for glacier facies classification of Smudra Tapu glacier in Himachal Pradesh. RISAT-1 based snow cover area (SCA) mapping, snow wetness and snow density retrieval and glacier facies classification have been done for the first time in NWH region. SAR-based inversion models were used for finding out wet and dry snow dielectric constant, dry and wet SCA, snow wetness and snow density. RISAT-1 medium resolution scan-SAR mode (MRS) in HV polarization was used for first time in NWH for deriving time series of SCA maps in Beas and Bhagirathi river basins for years 2013–2014. The SAR-based inversion models were implemented separately for RISAT-1 quad pol. FRS2, for wet snow and dry snow permittivity retrieval. Masks for layover and shadow were considered in estimating final snow parameters. The overall accuracy in terms of R2 value comes out to be 0.74 for snow wetness and 0.72 for snow density based on the limited ground truth data for subset area of Manali sub-basin of Beas River up to Manali for winter of 2014. Accuracy for SCA was estimated to be 95 % when compared with optical remote sensing based SCA maps with error of ±10 %. The time series data of RISAT-1 MRS and hybrid data in RH/RV mode based decompositions were also used for glacier radar zones classification for Gangotri and Samudra Tapu glaciers. The various glaciers radar zones or facies such as debris covered glacier ice, clean or bare glacier ice radar zone, percolation/refreeze radar zone and wet snow, ice wall etc., were identified. The accuracy of classified maps was estimated using ground truth data collected during 2013 and 2014 glacier field work to Samudra Tapu and Gangotri glaciers and overall accuracy was found to be in range of 82–90 %. This information of various glacier radar zones can be utilized in marking firn line of glaciers, which can be helpful for glacier mass balance studies.  相似文献   
16.
17.
18.
Chandra  Sagarika  Kumar  Praveen  Siingh  Devendraa  Roy  I.  Victor  N. Jeni  Kamra  A. K. 《Natural Hazards》2022,110(1):57-68

Physical phenomena observed before strong earthquakes have been reported for centuries. Precursor signals, which include radon anomalies, electrical signals, water level changes and ground lights near the epicenter, can all be used for earthquake prediction. Anomalous negative signals observed by ground-based atmospheric electric field instruments under fair weather conditions constitute a novel earthquake prediction approach. In theory, the abnormal radiation of heat before an earthquake produces fair weather around the epicenter. To determine the near-epicenter weather conditions prior to an earthquake, 81 global earthquake events with magnitudes of 6 or above from 2008 to 2021 were collected. According to Harrison's fair weather criteria, in 81.48% of all statistical cases, the weather was fair 6 h before the earthquake; in 62.96% of all cases, the weather was fair 24 h before the event. Moreover, most of these cases without fair weather several hours before the earthquake were near the sea. Among the 37 inland earthquakes, 86.49% were preceded by 6 h of fair weather, and 70.27% were preceded by fair weather for 24 h. We conclude that the weather near the epicenter might be fair for several hours before a strong earthquake, especially for inland events.

  相似文献   
19.
In the present study, behavior of the SARAL/AltiKa (Satellite with ARgos and ALtiKa) waveforms over Maithon Reservoir (~65 km2 of surface area), Jharkhand, India, has been studied. The estimated water level has been compared with the in situ measurements at hydro-gauging station at the dam site. The problem of minimization of errors in the water level retrieval from AltiKa measurements has been resolved by improvement of the retracking method. A real retracking gate detection algorithm based on statistical analysis harnessing various physical parameters of the waveform has been developed, which has been applied to SARAL/AltiKa waveforms over the Maithon reservoir. Comparing the in-situ measurements with altimetry data (from cycle 1, 19 March 2013 to cycle 12, 8 April 2014) showed that it is crucial to improve the retracking method. Results showed accuracy of water level monitoring increased by nearly 76% by the newly developed waveform retracking algorithm over non-retracked water level. We also compared this new method with the existing ice-1 algorithm and found that with the new method there is improvement of ~27% over ice-1 retracked water level. The correlation coefficient values and root mean square values without retracking, with ice-1 algorithm and with newly developed retracking algorithm were 0.87, 0.91, and 0.95, and 8.12 cm, 2.08 cm, and 1.42 cm, respectively. This shows the proposed retracker performed better than ice-1. The retracking procedure helped in outliers' identification and substitution and with waveform fitting and waveform parameter extraction. This algorithm should have good performance capability for retrieving water level over inland water bodies like Maithon reservoir.  相似文献   
20.
The seismic response spectrum defines the amplitude of the load, but it does not specify the number of cycles for which the load must be resisted by the structure. The amplitude by itself is not sufficient to evaluate the seismic resistance of a structure, because the structure's strength, stiffness and energy‐dissipation capacity reduce with an increase in the number of load cycles. This paper presents a cyclic‐demand spectrum, which, in conjunction with the amplitude spectrum, provides a more complete definition of the seismic load, hence a way to consider the degradation in strength, stiffness and energy‐dissipation capacity in a rational manner. Similarly to three amplitude parameters (peak ground acceleration, peak ground velocity, and peak ground displacement), three cyclic‐demand parameters are introduced for stiff, moderately stiff, and flexible systems. A design example is presented to illustrate the use of the cyclic‐demand spectrum. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号