首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   471篇
  免费   14篇
  国内免费   2篇
测绘学   42篇
大气科学   62篇
地球物理   118篇
地质学   174篇
海洋学   26篇
天文学   35篇
综合类   4篇
自然地理   26篇
  2021年   5篇
  2020年   10篇
  2019年   6篇
  2018年   15篇
  2017年   20篇
  2016年   25篇
  2015年   20篇
  2014年   16篇
  2013年   25篇
  2012年   22篇
  2011年   28篇
  2010年   23篇
  2009年   29篇
  2008年   19篇
  2007年   19篇
  2006年   6篇
  2005年   14篇
  2004年   5篇
  2003年   10篇
  2002年   12篇
  2001年   7篇
  2000年   4篇
  1999年   7篇
  1998年   4篇
  1997年   7篇
  1996年   8篇
  1995年   5篇
  1993年   5篇
  1992年   8篇
  1991年   3篇
  1990年   5篇
  1989年   3篇
  1987年   4篇
  1984年   6篇
  1982年   4篇
  1981年   4篇
  1980年   6篇
  1979年   3篇
  1978年   3篇
  1974年   4篇
  1973年   4篇
  1972年   3篇
  1971年   4篇
  1969年   3篇
  1968年   3篇
  1967年   2篇
  1966年   2篇
  1964年   2篇
  1962年   2篇
  1950年   2篇
排序方式: 共有487条查询结果,搜索用时 15 毫秒
481.
In connection with the work for the next generation VLBI2010 Global Observing System (VGOS) of the International VLBI Service for Geodesy and Astrometry, a new scheduling package (Vie_Sched) has been developed at the Vienna University of Technology as a part of the Vienna VLBI Software. In addition to the classical station-based approach it is equipped with a new scheduling strategy based on the radio sources to be observed. We introduce different configurations of source-based scheduling options and investigate the implications on present and future VLBI2010 geodetic schedules. By comparison to existing VLBI schedules of the continuous campaign CONT11, we find that the source-based approach with two sources has a performance similar to the station-based approach in terms of number of observations, sky coverage, and geodetic parameters. For an artificial 16 station VLBI2010 network, the source-based approach with four sources provides an improved distribution of source observations on the celestial sphere. Monte Carlo simulations yield slightly better repeatabilities of station coordinates with the source-based approach with two sources or four sources than the classical strategy. The new VLBI scheduling software with its alternative scheduling strategy offers a promising option with respect to applications of the VGOS.  相似文献   
482.
The Sitnikov problem is one of the most simple cases of the elliptic restricted three body system. A massless body oscillates along a line (z) perpendicular to a plane (x,y) in which two equally massive bodies, called primary masses, perform Keplerian orbits around their common barycentre with a given eccentricity e. The crossing point of the line of motion of the third mass with the plane is equal to the centre of gravity of the entire system. In spite of its simple geometrical structure, the system is nonlinear and explicitly time dependent. It is globally non integrable and therefore represents an interesting application for advanced perturbative methods. In the present work a high order perturbation approach to the problem was performed, by using symbolic algorithms written in Mathematica. Floquet theory was used to derive solutions of the linearized equation up to 17th order in e. In this way precise analytical expressions for the stability of the system were obtained. Then, applying the Courant and Snyder transformation to the nonlinear equation, algebraic solutions of seventh order in z and e were derived using the method of Poincaré–Lindstedt. The enormous amount of necessary computations were performed by extensive use of symbolic programming. We developed automated and highly modularized algorithms in order to master the problem of ordering an increasing number of algebraic terms originating from high order perturbation theory.  相似文献   
483.
A54 Cosmic Ray Acceleration in Galactic Wind Shocks A71 Detection of Ultra‐High Energy Cosmic Rays and Neutrinos with LOFAR A80 Status of the gravitational‐wave detector GEO600 A87 Recent Results and Future of the MAGIC gamma‐ray telescope A92 Cosmic ray detection with the radio technique A93 Cosmic Ray Physics with IceCube A94 The resonance‐like gamma‐ray absorption processes for use in astrophysics A97 Geometry reconstruction of air shower fluorescence detectors revisited A102 Supermassive Binary Black Holes & Radio Jets A108 Muonic Component of Air Showers Measured by KASCADE‐Grande A110 Towards new frontiers: observation of photons with energies above 1018 eV A112 The IceCube Neutrino Telescope A114 The ground‐based gamma‐ray observatory CTA A116 IceCube: Recent Results and Prospects A117 Particle Physics with AMANDA and IceCube A118 Altitude dependence of fluorescence light emission by extensive air showers A120 Neutrino‐induced cascades in AMANDA & IceCube A122 Enhancement Telescopes for the Pierre Auger Southern Observatory in Argentina A123 Proton spectra from relativistic shock environments in AGN and GRBs A124 The Baikal Neutrino Telescope – Physics Results A127 Searches for point‐like sources of cosmic neutrinos with IceCube A128 The MAGIC/IceCube Target of Opportunity Programtest run A131 Supernova detection with IceCube: from low to high energy neutrinos A132 Measurement of the UHECR energy spectrum from hybrid data of the Pierre Auger Observatory A133 Extension of IceCube at Lower Energy: the Use of AMANDA as Nested Array and the Future Prospectives A135 Searching for neutrinos with the Pierre Auger Observatory A138 Search for Transient Emission of Neutrinos in IceCube A140 Acoustic Neutrino Detection in Antarctic Ice A159 AMANDA limits on the diffuse muon‐neutrino flux: physics implications A164 Investigation of the Radio Emission of Cosmic Ray Air Showers with LOPES A168 The Northern Site of the Pierre Auger Observatory A170 Shower reconstruction and size spectra with KASCADE‐Grande data A171 Neutrinos from Gamma Ray Bursts: predictions and limits from AMANDA‐II data A172 Simulation study of shower profiles from ultra‐high energy cosmic rays A174 Upper limit to the photon fraction in cosmic rays above 1019 eV from the Pierre Auger Observatory A176 Astrophysics at MeV energies A180 Study of the Cosmic Ray Composition above 0.4 EeV using the Longitudinal Profiles of Showers observed at the Pierre Auger Observatory A185 Backgrounds for UHE horizontal neutrino showers A186 The Front‐End Cards of the Pierre Auger Surface Detectors: Test Results and Performance in the Field A187 Monte Carlo Studies for MAGIC‐II A194 Measuring the proton‐air cross section from logitudinal air shower profiles A195 The UHECR energy spectrummeasured at the Pierre Auger Observatory A203 Highlights of Observations of Galactic Sources with the MAGIC telescope A207 Adesign study for a 12.5 m ∅︁ Imaging Air Cherenkov Telescope for ground‐based γ ‐ray astronomy A210 The Future of Long‐Wavelengths Radio‐Astronomy in Germany: LOFAR and GLOW A211 Online Monitoring of the Pierre Auger Observatory A216 OPTIMA‐Burst – Catching GRB Afterglows (and other Transients) with High Time Resolution A227 JEM‐EUSO mission A232 Rapid Variations in AGN: Clues on Particle Accelerators A235 Systematic search forVHEgamma‐ray emission from X‐ray bright high‐frequency peaked BL Lac objects A237 Prospects for GeV Astronomy in the Era of GLAST A241 Improvements of the energy reconstruction for the MAGIC telescope by means of analysis and Monte Carlo techniques A265 Discovery of VHE γ ‐rays from BL Lacertae with the MAGIC telescope A266 Results of two observation cycles of LS I+61°303 with the MAGIC telescope A267 Wide Range Multifrequency Observations of Northern TeV Blazars A269 Diffusive and convective cosmic ray transport in elliptical galaxies  相似文献   
484.
485.
Sediment budgeting concepts serve as quantification tools to decipher the erosion and accumulation processes within a catchment and help to understand these relocation processes through time. While sediment budgets are widely used in geomorphological catchment-based studies, such quantification approaches are rarely applied in geoarchaeological studies. The case of Charlemagne's summit canal (also known as Fossa Carolina) and its erosional collapse provides an example for which we can use this geomorphological concept and understand the abandonment of the Carolingian construction site. The Fossa Carolina is one of the largest hydro-engineering projects in Medieval Europe. It is situated in Southern Franconia (48.9876°N, 10.9267°E; Bavaria, southern Germany) between the Altmühl and Swabian Rezat rivers. It should have bridged the Central European watershed and connected the Rhine–Main and Danube river systems. According to our dendrochronological analyses and historical sources, the excavation and construction of the Carolingian canal took place in AD 792 and 793. Contemporary written sources describe an intense backfill of excavated sediment in autumn AD 793. This short-term erosion event has been proposed as the principal reason for the collapse and abandonment of the hydro-engineering project. We use subsurface data (drillings, archaeological excavations, and direct-push sensing) and geospatial data (a LiDAR digital terrain model (DTM), a pre-modern DTM, and a 3D model of the Fossa Carolina] for the identification and sediment budgeting of the backfills. Dendrochronological findings and radiocarbon ages of macro remains within the backfills give clear evidence for the erosional collapse of the canal project during or directly after the construction period. Moreover, our quantification approach allows the detection of the major sedimentary collapse zone. The exceedance of the manpower tipping point may have caused the abandonment of the entire construction site. The spatial distribution of the dendrochronological results indicates a north–south direction of the early medieval construction progress. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   
486.
An airborne gravity campaign was carried out at the Dome-C survey area in East Antarctica between the 17th and 22nd of January 2013, in order to provide data for an experiment to validate GOCE satellite gravity gradients. After typical filtering for airborne gravity data, the cross-over error statistics for the few crossing points are 11.3 mGal root mean square (rms) error, corresponding to an rms line error of 8.0 mGal. This number is relatively large due to the rough flight conditions, short lines and field handling procedures used. Comparison of the airborne gravity data with GOCE RL4 spherical harmonic models confirmed the quality of the airborne data and that they contain more high-frequency signal than the global models. First, the airborne gravity data were upward continued to GOCE altitude to predict gravity gradients in the local North-East-Up reference frame. In this step, the least squares collocation using the ITGGRACE2010S field to degree and order 90 as reference field, which is subtracted from both the airborne gravity and GOCE gravity gradients, was applied. Then, the predicted gradients were rotated to the gradiometer reference frame using level 1 attitude quaternion data. The validation with the airborne gravity data was limited to the accurate gradient anomalies (TXX, TYY, TZZ and TXZ) where the long-wavelength information of the GOCE gradients has been replaced with GOCO03s signal to avoid contamination with GOCE gradient errors at these wavelengths. The comparison shows standard deviations between the predicted and GOCE gradient anomalies TXX, TYY, TZZ and TXZ of 9.9, 11.5, 11.6 and 10.4 mE, respectively. A more precise airborne gravity survey of the southern polar gap which is not observed by GOCE would thus provide gradient predictions at a better accuracy, complementing the GOCE coverage in this region.  相似文献   
487.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号