首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Lake shapes and their spatial distribution are important geomorphological indicators in previously glaciated areas. Their shapes are influenced by the underlying geological structure and processes of glacial sediment deposition or erosion. Since these processes act on large areas, distribution of lakes can reflect the intensity of glacial erosional/depositional processes and their spatial extent. Landsat imagery was used to extract lake outlines from a selected pilot‐study area on the widest ice‐free coastal margin of the south‐western Greenland north of Kangerlussuaq. Analysis included image classification and spatial analysis of lakes with elevation data using geographic information system (GIS) tools. A morphometric index was applied to extract kettle lakes as indicators of a specific glacial process – ice stagnation. Analysis of their spatial distribution helped in the reconstruction of glacial dynamics in formerly glaciated terrain. Our results show that spatial lake distribution combined with elevation analysis can be used to identify zones of glacial erosion and deposition. The highest concentrations of lakes within the study area occupy the elevation range between 164 and 361 m above sea level (a.s.l.). This zone can be identified as an area where intensive glacial erosion took place in the past. The widespread distribution of modeled kettle lake features within the same elevation range and across the study area suggests that the last deglaciation process was accompanied by abandonment of blocks of stagnant ice. This conclusion is supported by surface exposure ages obtained in the same study area and published elsewhere. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
In this study we analyzed runoff and sediment yield from land under various traditional and current land uses in Mediterranean mountain areas, using long‐term data from an experimental station in the Aísa Valley, Central Spanish Pyrenees. Monitoring at this station has provided 20 years of data that can help explain the hydrological and geomorphological changes that have been observed at larger spatial scales, and also the changes that have occurred to some of the most characteristic landscapes of the Mediterranean middle mountains. In spite of the problems associated with the use of small experimental plots, the results obtained are consistent with other studies in the Mediterranean region, and confirm the strong influence of land use changes on runoff generation and sediment yield. The results indicate that: (i) cereal cultivation on steep slopes (both alternating cereal cultivation and fallow on sloping fields and shifting agriculture on the steepest slopes) represents a major problem for soil conservation. This explains the occurrence throughout the Mediterranean mountains of many degraded hillslopes, which show evidence of sheet wash erosion, rilling, gullying and shallow landsliding; (ii) farmland abandonment has led to a marked reduction in runoff and sediment yield as a consequence of rapid plant recolonization, particularly by dense shrubs; (iii) the natural transformation of abandoned fields into grazing meadows has reduced runoff and sediment yield. Land use trends in the Mediterranean mountains are mainly characterized by generalized farmland abandonment and a decrease in livestock pressure. From a hydrological and geomorphological point of view the main consequences have been a reduction in overland flow from the hillslopes, and a reduction in sediment sources, with differences up to one order of magnitude in sediment yield from dense shrub cover and grazing meadow areas compared with areas under shifting agriculture. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
In Mediterranean semi‐arid conditions, the availability of studies monitoring channel adjustments as a response to reforestation and check dams over representative observation periods, could help develop new management strategies. This investigation is an integrated approach assessing the adjustments of channel morphology in a typical torrent of southern Italy after land‐use changes and check dam construction across a period of about 60 years. A statistical analysis of historical rainfall records, an analysis of land‐use changes in the catchment area and a geomorphological mapping of channel adjustments were carried out and combined with field surveys of bed surface grain‐size over a 5‐km reach including 14 check dams. The analysis of the historical rainfall records showed a slight decrease in the amount and erosivity of precipitation. Mapping of land‐use changes highlighted a general increase of vegetal coverage on the slopes adjacent to the monitored reaches. Together with the check dam network installation, this increase could have induced a reduction in water and sediment supply. The different erosional and depositional forms and adjustments showed a general narrowing between consecutive check dams together with local modifications detected upstream (bed aggradation and cross‐section expansion together with low‐flow realignments) and downstream (local incision) of the installed check dams. Changes in the torrent bends were also detected as a response to erosional and depositional processes with different intensities. The study highlighted: the efficiency of check dams against the disrupting power of intense floods by stabilizing the active channel and the influence of reforestation in increasing hillslope protection from erosion and disconnectivity of water and sediment flows towards the active channel. Only slight management interventions (for instance, the conversion of the existing check dams into open structures) are suggested, in order to mobilize the residual sediment avoiding further generalized incision of the active channel and coast line erosion. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

4.
The distribution of trace metals in alluvial sediments depends on their natural background concentrations, and on the dynamics of contemporary depositional and erosional (mainly flood‐induced) processes. Geological and geochemical investigations were carried out in the valley of Vistula River near Magnuszew (central Poland). Sediment samples were collected from a depth of 35 cm and comprise sediments of all defined geomorphological features. Identification and geological interpretation of the morphodynamic sediment features was supported by aerial photographs and high‐resolution satellite images. These studies revealed that the distribution of trace metals is closely linked to the morphogenesis of the alluvial floodplain. The highest concentrations of Cu, Co, Zn, V, Cr and Ni were observed in crevasse‐splays deposits. By contrast, Sr, Pb and As were concentrated in deposits which fill oxbow lakes (partly infilled with organic deposits). The lowest concentrations of trace metals were detected in flood sediments deposited within erosional troughs. The geomorphological and sedimentological history of the fluvial features explains the pattern of heavy metal distribution on the current floodplain surface. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
Natural bedrock rivers flow in self‐formed channels and form diverse erosional morphologies. The parameters that collectively define channel morphology (e.g. width, slope, bed roughness, bedrock exposure, sediment size distribution) all influence river incision rates and dynamically adjust in poorly understood ways to imposed fluid and sediment fluxes. To explore the mechanics of river incision, we conducted laboratory experiments in which the complexities of natural bedrock channels were reduced to a homogenous brittle substrate (sand and cement), a single sediment size primarily transported as bedload, a single erosion mechanism (abrasion) and sediment‐starved transport conditions. We find that patterns of erosion both create and are sensitive functions of the evolving bed topography because of feedbacks between the turbulent flow field, sediment transport and bottom roughness. Abrasion only occurs where sediment impacts the bed, and so positive feedback occurs between the sediment preferentially drawn to topographic lows by gravity and the further erosion of these lows. However, the spatial focusing of erosion results in tortuous flow paths and erosional forms (inner channels, scoops, potholes), which dissipate flow energy. This energy dissipation is a negative feedback that reduces sediment transport capacity, inhibiting further incision and ultimately leading to channel morphologies adjusted to just transport the imposed sediment load. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
High-resolution topographic models have revolutionized monitoring of river changes by comparing sequential river topographic surveys (i.e. change detection). Nevertheless, much more may be obtained from this innovative quantification of changes. In this paper, we enhance the interpretation of geomorphic processes by presenting a new method for understanding of sources and sinks of sediment, river sediment transfers and functional sediment connectivity. Repeat digital elevation models (DEMs) obtained by photogrammetry were used to quantify topographic change after two floods by creating a DEM of difference (DoD) of a 6.5 km-long reach of Rambla de la Viuda stream, an ephemeral gravel-bed river in eastern Spain. The proposed method involved dividing the channel into 10 m-long longitudinal strips that were used to systematically draw boundaries between the erosional and depositional areas of the DoD. The analysis objectively: (i) drew a series of erosional and depositional segments, from 120 to 1360 m in length; (ii) estimated ranges of source-to-storage sediment transport distances, 320–670 m in the upstream and middle reaches and up to 2030 m in the lower reach; and (iii) obtained values of functional connectivity (i.e. the ratio between the sediment exported (erosion) and retained (deposition), ranging from 103 to 10−3). The variability in these three parameters along the river was found to be related to the level of channel disturbance by in-stream mining during the 1990s and 2000s. Additionally, this method indicates that the main process responsible for self-adjustment of the present morphosedimentary conditions is intra-reach erosion of banks and channel beds. Thus, this study proposes a new methodology to characterize morphological change, sediment transfer and connectivity that may serve as environmental indicators of the hydromorphological integrity of rivers with potential application to the European Water Framework Directive. © 2019 John Wiley & Sons, Ltd.  相似文献   

7.
This article investigates landscape characteristics and sediment composition in the western Greater Caucasus by using multiple methods at different timescales. Our ultimate goal is to compare short‐term versus long‐term trends in erosional processes and to reconstruct spatio‐temporal changes in sediment fluxes as controlled by partitioning of crustal shortening and rock uplift in the orogenic belt. Areas of active recent uplift are assessed by quantitative geomorphological techniques [digital elevation model (DEM) analysis of stream profiles and their deviation from equilibrium] and compared with regions of rapid exhumation over longer time intervals as previously determined by fission‐track and cosmogenic‐nuclide analyses. Complementary information from petrographic and heavy‐mineral analyses of modern sands and ancient sandstones is used to evaluate erosion integrated throughout the history of the orogen. River catchments displaying the highest relief, as shown by channel‐steepness indices, correspond with the areas of most rapid exhumation as outlined by thermochronological data. The region of high stream gradients is spatially associated with the highest topography around Mount Elbrus, where sedimentary cover strata have long been completely eroded and river sediments display the highest metamorphic indices and generally high heavy‐mineral concentrations. This study reinforces the suggestion that the bedrock–channel network can reveal much of the evolution of tectonically active landscapes, and implies that the controls on channel gradient ultimately dictate the topography and the relief along the Greater Caucasus. Our integrated datasets, obtained during a decade of continuing research, display a general agreement and regularity of erosion patterns through time, and consistently indicate westward decreasing rates of erosional unroofing from the central part of the range to the Black Sea. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
Process inference in geomorphology is hindered by a lack of information on the true temporal distribution of contemporary erosional and depositional activity. To tackle this problem a low-cost, automatic monitoring system based on the photo-electronic erosion pin (PEEP) sensor has been developed. The PEEP is essentially an array of photosensitive cells enclosed within a transparent tube and connected by cable to a datalogger. When inserted into an eroding landform, subsequent retreat of the face exposes more photosensitive cells to light which increases PEEP voltage output. Deposition decreases sensor outputs. The logged signals thus reveal the magnitude, timing and frequency of erosion and deposition events with much greater precision than has hitherto been possible. Measurement principles, electronic and physical design, calibration, field installation, problems and prospects and pilot results from a river bank erosion site are discussed. The PEEP system appears to have great potential for disentangling competing hypotheses in geomorphological process studies, and in building and testing erosion and sediment transport models of high temporal resolution.  相似文献   

9.
A method of analysis for predicting the time development of hillslope profiles is presented. The technique is based upon the assumption of weathering limited erosion and assumes that the local surface normal erosion rate is dependent upon the local flux of erosional agent and a function of the local slope gradient. This technique has been previously applied with success to analogous erosional processes in the sand blasting, chemical and energetic atom bombardment induced ablation of solids. The analysis shows how linearly segmented profiles can develop from initially curved surfaces and indicates the progress of profiles to stable end forms. Actual application to geomorphological situations is limited by lack of knowledge of micro-environmental erosion fluxes and the gradient dependence of erosion and it is suggested that field observations and laboratory simulations could be helpful in determining the utility of the analysis technique outlined here.  相似文献   

10.
Digital terrain models (DTMs) are a standard data source for a variety of applications. DTM differencing is also widely used for detection and quantification of topographic changes. While several investigations have been made on the accuracy of DTMs, calculated from different kinds of input data, little has been published on the error of DTM differencing, specifically for the quantification of geomorphological processes. In this study, an extensive, multi‐temporal set of airborne laser scanning (ALS) data is used to investigate the accuracy of topographic change calculations in a high alpine environment, caused by different geomorphic processes. Differences from DTMs with cell sizes ranging from 0.25 m to 10 m were calculated and compared to very accurate point‐to‐point calculations for a variety of processes and in nearby stable areas which show no significant surface changes. The representativeness of the DTM differences is then compared to the terrain slope and surface roughness of the investigated areas to show the influence of these parameters on the errors in the differences. Those errors are then taken into account for analyses of the applicability of different cell sizes for the investigation of geomorphic processes with different magnitudes and over different time periods. The analyses show that the error of DTM differences increases with lower point densities and higher roughness and slope values. The higher the error, the greater the differences between two elevation datasets have to be in order to quantify certain morphodynamic processes. Lower point densities and higher roughness and slope values require greater process rates or longer time intervals in order to obtain valid results. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
Nature can provide analogues for post‐mining landscapes in terms of landscape stability and also in terms of the rehabilitated structure ‘blending in’ with the surrounding undisturbed landscape. In soil‐mantled landscapes, hillslopes typically have a characteristic pro?le that has a convex upper hillslope pro?le with a concave pro?le lower down the slope. In this paper hillslope characteristic form is derived using the area–slope relationship from pre‐mining topography at two sites in Western Australia. Using this relationship, concave hillslope pro?les are constructed and compared to linear hillslopes in terms of sediment loss using the SIBERIA erosion model. It is found that concave hillslopes can reduce sediment loss by up to ?ve times that of linear slopes. Concave slopes can therefore provide an alternative method for the construction of post‐mining landscapes. An understanding of landscape geomorphological properties and the use of erosion models can greatly assist in the design of post‐mining landscapes. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

12.
A large number of rivers are frozen annually, and the river ice cover has an influence on the geomorphological processes. These processes in cohesive sediment rivers are not fully understood. Therefore, this paper demonstrates the impact of river ice cover on sediment transport, i.e. turbidity, suspended sediment loads and erosion potential, compared with a river with ice‐free flow conditions. The present sediment transportation conditions during the annual cycle are analysed, and the implications of climate change on wintertime geomorphological processes are estimated. A one‐dimensional hydrodynamic model has been applied to the Kokemäenjoki River in Southwest Finland. The shear stress forces directed to the river bed are simulated with present and projected hydroclimatic conditions. The results of shear stress simulations indicate that a thermally formed smooth ice cover diminishes river bed erosion, compared with an ice‐free river with similar discharges. Based on long‐term field data, the river ice cover reduces turbidity statistically significantly. Furthermore, suspended sediment concentrations measured in ice‐free and ice‐covered river water reveal a diminishing effect of ice cover on riverine sediment load. The hydrodynamic simulations suggest that the influence of rippled ice cover on shear stress is varying. Climate change is projected to increase the winter discharges by 27–77% on average by 2070–2099. Thus, the increasing winter discharges and possible diminishing ice cover periods both increase the erosion potential of the river bed. Hence, the wintertime sediment load of the river is expected to become larger in the future. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
Riparian vegetation responds to hydrogeomorphic disturbances and environmental changes and also controls these changes. Here, we propose that the control of sediment erosion and deposition by riparian vegetation is a key geomorphological and ecological (i.e. biogeomorphic) function within fluvial corridors. In a 3 year study, we investigated the correlations between riparian vegetation and hydrogeomorphic dynamics along a transverse gradient from the main channel to the floodplain of the River Tech, France. Sediment erosion and deposition rates varied significantly along the transverse gradient as a function of the vegetation biovolume intercepting water flow. These effects, combined with the extremely strong mechanical resistance of pioneer woody structures and strong resilience of pioneer labile herbaceous communities, Populus nigra and Salix spp., explain the propensity of biogeomorphic succession (i.e. the synergy between vegetation succession and landform construction) to progress between destructive floods. This geomorphological function newly identified as an ‘ecosystem function’ per se encompasses the coupling of habitat and landform creation, maintenance and change with fundamental ecosystem structural changes in space and in time. Three different biogeomorphic functions, all related to the concept of ecosystem engineering, were identified: (i) the function of pioneer herbaceous communities to retain fine sediment and diaspores in the exposed zones of the active tract near the water resource, facilitating recruitment of further herbaceous and Salicacea species; (ii) the function of woody vegetation to drive the construction of forested islands and floodplains; and (iii) the function of stabilised riparian forests to act as ‘diversity reservoirs’ which can support regeneration after destructive floods. Overall, this study based on empirical data points to the fundamental importance of sediment flow control by pioneer riparian vegetation in defining fluvial ecosystem and landform organisation in time and in space. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper, we present a methodology to construct a sediment budget for meso‐scale catchments. We combine extensive field surveys and expert knowledge of the catchment with a sediment delivery model. The meso‐scale Mediterranean drainage basin of the Dragonja (91 km2), southwest Slovenia, was chosen as case study area. During the field surveys, sheet wash was observed on sloping agricultural fields during numerous rainfall events, which was found to be the main source of sediment. With the sediment yield model WATEM/SEDEM the estimated net erosion on the hillslopes 4·1 t ha–1 y–1 (91% of inputs). The second source, bank erosion (4·2%; 0·25 t ha–1 y–1) was monitored during several years with erosion pins and photogrammetric techniques. The last source, channel incision, was derived from geomorphological mapping and lichenomery and provided 3·8% (0·17 t ha–1 y–1) of the sediment input. The river transports its suspended sediment mainly during high‐flow events (sampled with automated water samplers). About 27% (1·2 t ha–1 y–1) of the sediment delivered to the channel is deposited on floodplains and low terraces downstream (estimated with geomorphological mapping, coring and cesium‐137 measurements). The sediment transported as bedload disintegrates during transport to the outlet due to the softness of the bedrock material. As a result, the river carries no bedload when it reaches the sea. The results imply a build‐up of sediment in the valleys catchment. However, extreme flood events may flush large amounts of sediment stored in the lower parts of the system. Geomorphological evidence exists in the catchment that such high magnitude, low frequency events have happened in the past. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
Inner gorges often result from the propagation of erosional waves related to glacial/interglacial climate shifts. However, only few studies have quantified the modern erosional response to this glacial conditioning. Here, we report in situ 10Be data from the 64 km2 Entlen catchment (Swiss Alps). This basin hosts a 7 km long central inner gorge with two tributaries that are >100 m‐deeply incised into thick glacial till and bedrock. The 10Be concentrations measured at the downstream end of the gorge yield a catchment‐wide erosion rate of 0.42 ± 0.04 mm yr‐1, while erosion rates are consistently lower upstream of the inner gorge, ranging from 0.14 ± 0.01 mm yr‐1 to 0.23 ± 0.02 mm yr‐1. However, 10Be‐based sediment budget calculations yield rates of ~1.3 mm yr‐1 for the inner gorge of the trunk stream. Likewise, in the two incised tributary reaches, erosion rates are ~2.0 mm yr‐1 and ~1.9 mm yr‐1. Moreover, at the erosional front of the gorge, we measured bedrock incision rates ranging from ~2.5 mm yr‐1 to ~3.8 mm yr‐1. These rates, however, are too low to infer a post‐glacial age (15–20 ka) for the gorge initiation. This would require erosion rates that are between 2 and 6 times higher than present‐day estimates. However, the downcutting into unconsolidated glacial till favored high erosion rates through knickzone propagation immediately after the retreat of the LGM glaciers, and subsequent hillslope relaxation led to a progressive decrease in erosion rates. This hypothesis of a two‐ to sixfold decrease in erosion rates does not conflict with the 10Be‐based erosion rate budgets, because the modern erosional time scale recorded by 10Be cover the past 2–3 ka only. These results point to the acceleration of Holocene erosion in response to the glacial overprint of the landscape. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
A deeper understanding of the sediment characteristics associated with rock fragment content can improve our knowledge of the erosional processes and transport mechanisms of sediments on steep rocky slopes. This research used simulated rainfall experiments lasting for 1 h at a rate of 90 mm h−1 and employed 5 × 1 × 0.4 m parallel troughs filled with purple soils with different rock fragment volumetric contents (0, 5, 10, 20, 30 and 40%) on a 15° slope gradient. For each simulated event, runoff and sediment were sampled at 1- and 3-min intervals, respectively, to study, in detail, the temporal changes in the size distributions of the eroded sediments. The results show that sediment concentrations, soil erosion rates and soil loss ratios significantly decreased as rock fragment content increased for rock fragment contents from 0 to 40% in purple soils. During the transportation process, clay particles often formed aggregates and were then transported as larger particles. Silt particles were more likely to be transported as primary particles with a low degree of sediment aggregation. Sand-sized particles, which constituted a greater proportion of the original soil than the eroded sediments, were formed from other fine particles and transported as aggregates rather than as primary particles. Suspension-saltation, which mainly transports fine particles of 0.02–0.05 mm and coarse particles larger than 0.5 mm in size, was the most important transport mechanism on steep rocky slopes. The results of this study can help to explain the inherent laws of erosional processes on steep rocky slopes and can provide a foundation for improving physical models of soil erosion. © 2019 John Wiley & Sons, Ltd.  相似文献   

17.
The enrichment of organic matter in interrill sediment is well documented; however, the respective roles of soil organic matter (SOM) and interrill erosion processes for the enrichment are unclear. In this study, organic matter content of sediment generated on two silts with almost identical textures, but different organic matter contents and aggregations, was tested. Artificial rainfall was applied to the soils in wet, dry and crusted initial conditions to determine the effects of soil moisture and rainfall and drying history on organic matter enrichment in interrill sediment. While erosional response of the soils varied significantly, organic matter enrichment of sediment was not sensitive to initial soil conditions. However, enrichment was higher on the silt with a lower organic matter content and lower interrill erodibility. The results show that enrichment of organic matter in interrill sediment is not directly related to either SOM content or soil interrill erodibility, but is dominated by interrill erosion processes. As a consequence of the complex interaction between soil, organic matter and interrill erosion processes, erodibility of organic matter should be treated as a separate variable in erosion models. Further research on aggregate breakdown, in particular the content and fate of the organic matter in the soil fragments, is required. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
This paper analyses the factors that control rates and extent of soil erosion processes in the 199 ha May Zegzeg catchment near Hagere Selam in the Tigray Highlands (Northern Ethiopia). This catchment, characterized by high elevations (2100–2650 m a.s.l.) and a subhorizontal structural relief, is typical for the Northern Ethiopian Highlands. Soil loss rates due to various erosion processes, as well as sediment yield rates and rates of sediment deposition within the catchment (essentially induced by recent soil conservation activities), were measured using a range of geomorphological methods. The area‐weighted average rate of soil erosion by water in the catchment, measured over four years (1998–2001), is 14·8 t ha?1 y?1, which accounts for 98% of the change in potential energy of the landscape. Considering these soil loss rates by water, 28% is due to gully erosion. Other geomorphic processes, such as tillage erosion and rock fragment displacement by gravity and livestock trampling, are also important, either within certain land units, or for their impact on agricultural productivity. Estimated mean sediment deposition rate within the catchment equals 9·2 t ha?1 y?1. Calculated sediment yield (5·6 t ha?1 y?1) is similar to sediment yield measured in nearby catchments. Seventy‐four percent of total soil loss by sheet and rill erosion is trapped in exclosures and behind stone bunds. The anthropogenic factor is dominant in controlling present‐day erosion processes in the Northern Ethiopian Highlands. Human activities have led to an overall increase in erosion process intensities, but, through targeted interventions, rural society is now well on the way to control and reverse the degradation processes, as can be demonstrated through the sediment budget. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
This paper investigates the controls of vegetation on runoff and erosion dynamics in the dryland environment of Jornada, New Mexico, USA. As the American southwest has seen significant shifts in the dominant vegetation species in the past 150 years, an understanding of the vegetation effects on hydrological and erosional processes is vital for understanding and managing environmental change. Small‐scale rainfall simulations were carried out to identify the hydrological and erosional processes resulting from the grassland and shrubland vegetation species. Results obtained using tree‐regression analysis suggested that the primary vegetation control on runoff and erosion is the shrub type and canopy density, which directly affects the local microtopographic gradient of mounds beneath the shrubs. Significant interactions and feedbacks were found to occur among the local mound gradient, crust cover, soil aggregate stability and antecedent soil moisture between the different vegetation species for both the runoff and erosion responses. Although some of the shrub species were found to produce higher sediment yields than the grass species, the distinguishing feature of the grassland was the significantly higher enrichment in the fine sediment fraction compared to all other surface cover types. This enrichment in fines has important implications for nutrient movement in such environments. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
The Andean Cordillera and piedmont significantly influence river system and dynamics, being the source of many of the important rivers of the Amazon basin. The Beni River, whose upper sub‐catchments drain the Andean and sub‐Andean ranges, is a major tributary of the Madeira River. This study examines the river in the south‐western Amazonian lowlands of Bolivia, where it develops mobile meanders. Channel migration, meander‐bend morphology and ox‐bow lakes are analysed at different temporal and spatial scales. The first part of this study was undertaken with the aim to link the erosion–deposition processes in the active channel with hydrological events. The quantification of annual erosion and deposition areas shows high inter‐annual and spatial variability. In this study, we investigate the conditions of sediment exportation in the river in relation to three hydrological parameters (flood intensity, date of discharge peak and duration of the bank‐full stage level). The second part of this study, focusing on the abandoned meanders, analyses the cutoff processes and the post‐abandonment evolution during 1967–2001. This approach shows the influence of the active channel behaviour on the sediment diffusion and sequestration of the abandoned meanders and allows us to build a first model of the contemporary floodplain evolution. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号