首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79篇
  免费   24篇
  国内免费   81篇
大气科学   1篇
地球物理   8篇
地质学   171篇
综合类   4篇
  2024年   3篇
  2023年   1篇
  2022年   6篇
  2021年   3篇
  2020年   2篇
  2019年   5篇
  2018年   5篇
  2017年   6篇
  2016年   8篇
  2015年   6篇
  2014年   4篇
  2013年   5篇
  2012年   8篇
  2011年   4篇
  2010年   13篇
  2009年   8篇
  2008年   7篇
  2007年   13篇
  2006年   14篇
  2005年   15篇
  2004年   11篇
  2003年   11篇
  2002年   3篇
  2001年   2篇
  2000年   2篇
  1999年   9篇
  1997年   1篇
  1996年   5篇
  1995年   3篇
  1994年   1篇
排序方式: 共有184条查询结果,搜索用时 109 毫秒
21.
青海五龙沟金矿区蚀变矿物光谱特征与找矿应用   总被引:2,自引:0,他引:2  
使用近红外光谱仪对五龙沟金矿区主要蚀变矿物进行了光谱测试,获得该矿区主要蚀变矿物的光谱数据;同时选择部分具有代表性的样品进行详细的镜下鉴定,并将镜下鉴定结果与野外实测光谱曲线进行对比分析,检查其对五龙沟金矿体矿化蚀变快速检测的有效性和准确度。对比分析结果表明,蚀变分带与矿体吻合较好,对矿化分带具有较好的指示意义,也为该区的金矿勘探提供了依据。   相似文献   
22.
青海格尔木早更新世昆仑河砾岩的发现及其地质意义   总被引:2,自引:0,他引:2  
昆仑河发源于昆仑山,是格尔木河的重要支流之一。前人所报道的新近纪与第四纪地层,主要集中于昆仑山垭口地区,而在昆仑河—格尔木河谷地中,只有中更新世以来的最新地层,从而提出了发生于1.1~0.6 Ma BP间的“昆仑—黄河运动”的概念。然而在昆仑河谷中发现了厚达20 m的钙质胶结的河流相砾石层(昆仑河砾岩),其分布、特征及其与纳赤台沟组、三岔河组和低阶地沉积等上覆地层的不整合接触关系,以及ESR法测定的该砾石层2个钙质胶结物样品的年龄(分别为1 042 ± 104 ka BP与1 269 ± 126 ka BP)均表明,早在距今1.27~1.42 Ma之前昆仑河—格尔木河河谷已经形成,而且已深切到现今的谷底。此后河谷内的多次切割与堆积,不应是构造运动的结果,而可能是冰期与间冰期气候变化所引起的侵蚀与搬运能力变化造成的。同样,昆仑山相对于柴达木盆地的强烈隆升至少应发生于距今1.27~1.42 Ma之前。   相似文献   
23.
东昆仑三道湾流纹英安斑岩锆石U-Pb年龄及其地质意义   总被引:2,自引:0,他引:2  
东昆仑格尔木河西三道湾流纹英安斑岩构成火山通道侵出相,侵入到纳赤台群哈拉巴依沟组碎屑岩系中,其形成时代对于造山带火山作用的研究和限定哈拉巴依沟组地层时代均具有重要的意义。采用激光烧蚀多接收器电感耦合等离子体质谱(LA-MC-ICP MS)方法,对三道湾流纹英安斑岩进行了锆石U-Pb定年,结果表明,流纹英安斑岩中25个岩浆锆石206Pb/238U加权平均年龄为425.9 ± 2.6 Ma,它被解释为流纹英安斑岩的结晶年龄,说明三道湾次火山岩所代表的火山通道为早古生代造山晚期牦牛山组火山岩形成时的火山喷发中心之一,而非晚侏罗世次火山岩。野外地质关系和次火山岩年龄可以限定哈拉巴依沟组形成于中志留世之前。   相似文献   
24.
通过地表路线地质观测、不同比例尺的活动构造填图及不同深度的地球物理探测,证实青藏铁路沿线发育近南北向活动构造带,表现为活动断层、地壳形变、第四纪断陷盆地、建造、地震活动、温泉线性分布及比较显著的地球物理异常。青藏铁路沿线近南北构造带现今活动性比较强烈,未来尚有增强趋势,能够诱发多种类型的地质灾害,对铁路路基、公路路基和永久建筑产生不同程度的工程危害。   相似文献   
25.
东昆仑断裂粘滑错动对青藏铁路变形效应的数值模拟   总被引:4,自引:2,他引:2  
东昆仑断裂是青藏高原北部现今仍在强烈活动的地震断裂之一,该断裂的未来地震活动及其突发性粘滑错动是青藏铁路面临的重大工程地质问题。基于东昆仑断裂的运动学特征,通过分别加入8 m和3 m的水平左旋位移,模拟了东昆仑断裂未来地震活动时震中位于铁路线附近和远离铁路2种情形下的铁路变形效应。模拟结果表明:震中位于铁路线附近时,断裂南侧基岩和第四系均发生8 m的左旋走滑位移,而铁路附近的第四系水平位移明显减小,铁轨和道床没有明显的断错,表现为4~5 m的连续左旋弯曲变形;铁路东、西两侧形成NE向的张裂陷和NW向的地震鼓包,而道床和铁轨的垂直位移幅度较小。震中远离铁路时的变形效应与震中位于铁路线附近时的变形相似,但位移幅度减小,铁轨和道床形成1~2 m的连续左旋弯曲变形。因此,东昆仑断裂未来再次发生7~8级强烈地震时,无论地震震中远离铁路还是在铁路附近,其断裂的突发性粘滑错动都将导致青藏铁路的大变形和破坏。  相似文献   
26.
青藏高原北部移动冰丘破坏桥墩的数值模拟   总被引:1,自引:0,他引:1  
青藏高原北部常年冻土区断裂破碎带发育的移动冰丘对桥梁、涵洞、输油管道等工程设施具有不同形式的破坏作用。考虑移动冰丘与工程设施的相互作用,根据野外观测和实验资料设计模型,应用三维有限元数值模拟方法,计算移动冰丘冻胀产生的位移场、应力场和桥墩弯曲应力,分析桥墩破裂机理。结果表明,移动冰丘能够产生11~-21 MPa的轴向应力和15~-31 MPa的主应力,在桥墩周围形成不同规模的应力集中区,导致桥墩发生显著偏移。桥墩的偏移和弯曲能够在桥墩内部产生高达61.9~64.6 MPa的张应力和-45.0~-49.0 MPa的压应力,超过桥墩的强度极限。在粗细桥墩连接部位,外侧形成张应力集中区,最大张应力达26~30 MPa;内侧形成压应力集中区,最大压应力达-25~-28.8 MPa。粗细桥墩连接部位外侧的张应力超过了钢筋混凝土的抗张强度,产生与野外观测资料基本吻合的桥墩破裂和结构破坏。移动冰丘导致桥墩变形破坏的三维有限元数值模拟能够为常年冻土区桥梁工程设计和地质灾害防治提供力学参数和科学依据。  相似文献   
27.
青藏高原北部不冻泉移动冰丘及灾害效应   总被引:2,自引:0,他引:2  
不冻泉移动冰丘发育于青藏高原北部常年冻土区断裂破碎带,2001年仅在青藏公路东南侧形成1个小型冰丘,2002年在青藏公路西北侧形成低矮冰丘群,2004-2005年发展成为大型冰丘群,2006年移动冰丘的发育高度和分布范围进一步增大。不冻泉移动冰丘不仅穿刺青藏公路路基,破坏青藏公路桥涵结构,蚕食青藏公路路堤,影响青藏公路的交通安全;而且导致输油管道拱曲变形,诱发地面塌陷和地裂缝,产生显著的灾害效应。采用适当的工程措施,通过地下疏导或地表排放沿断裂破碎带上涌的地下泉水,能够有效减轻或防治不冻泉移动冰丘的灾害效应。  相似文献   
28.
大兴安岭吉峰科马提岩地质地球化学特征   总被引:3,自引:0,他引:3  
野外地质调查和室内岩石学研究表明,大兴安岭北段吉峰林场一带变质超基性岩为具有典型鬣刺结构的科马提岩。科马提岩系列由橄榄质科马提岩、玄武质科马提岩及拉斑玄武岩、辉长岩等岩石组成。科马提岩显示了从超镁铁质到镁铁质地球化学趋势,拉斑玄武岩具有从富镁到富铁的趋势,而上覆长英质火山岩则遵循钙-碱趋势。科马提岩稀土配分型式为类似于南非超镁铁质科马提岩的平坦型或轻稀土略富集而重稀土平坦型。科马提岩系列8件样品的Sm-Nd同位素数据构成一条相关性较好的等时线,等时线年龄为1727Ma±74.7Ma,INd=0.510725±0.0000798,εNd(t)=6.94±1.56,表明科马提岩形成于中元古代早期,其源区为亏损的软流圈地幔。这一地壳增生事件可能与松嫩地块从西伯利亚地台南缘裂解有关。   相似文献   
29.
西藏当雄地区构造地貌及形成演化过程   总被引:9,自引:2,他引:9  
西藏当雄地区在区域性挤压缩短期后发育2种典型层状地貌面,即山顶面与盆地面,不同地块具有不同特点与不同高度的山顶面。山顶面形态与分区性、分段性明显受早期逆冲推覆构造与晚期断裂所控制,山顶面梯级带对应于区域张性-张扭性断裂与盆-山构造-地貌边界。原始山项面或高原主夷平面主要形成于15-8Ma,念青唐古拉山脉开始快速隆升与两侧地块初始断陷时代为8-4Ma,羊八井-当雄-谷露盆地快速裂陷事件发生于2-1.5Ma,区域NW向走滑断裂与现今河流峡谷主要形成于1.4Ma以来。当雄及邻区层状地貌面的形成、裂解与演化良好地反映了青藏高原腹地挤压缩短与地壳增厚期后区域构造活动和地貌环境变迁的动力学过程。  相似文献   
30.
青藏高原渐新世晚期隆升的地质证据   总被引:27,自引:1,他引:26  
国内外学者普遍认为,地壳缩短增厚是青藏高原隆升的主要原因,青藏高原隆升对环境变迁和东亚季风具有重要影响,但对青藏高原隆升时代存在不同认识。通过统计分析青藏高原中段新生代不同时期的地层倾角,表明区域褶皱变形主要发生于古近纪,中新世湖相沉积地层产状平缓,挤压构造变形微弱,说明地壳缩短增厚主要发生于中新世前。湖相沉积地层的孢粉分析结果表明,青藏地区热带亚热带阔叶林植被自始新世中期开始逐步减少,至中新世早期濒临消亡;暗针叶林植被自渐新世早中期开始逐步增加,至中新世早中期达到繁盛程度甚至居主导地位。根据这些地质证据,结合全球气候变化、古气温及年代学资料,综合推断青藏高原渐新世晚期隆升高度达到海拔4000m左右。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号