首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   5篇
  国内免费   12篇
大气科学   13篇
地球物理   1篇
地质学   9篇
  2023年   2篇
  2022年   3篇
  2021年   6篇
  2020年   1篇
  2019年   3篇
  2017年   1篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2007年   3篇
排序方式: 共有23条查询结果,搜索用时 15 毫秒
11.
基于数学形态学的三维风暴体自动识别方法研究   总被引:1,自引:1,他引:1  
基于雷达数据的风暴体识别、追踪及预警方法是重要的临近预报技术之一,其中准确的风暴体自动识别是进行风暴体自动追踪和预警的前提。在风暴体识别中常会碰到的两个问题是:虚假合并和从风暴簇中分离出相距较近的风暴单体。美国国家大气科学研究中心提出的TITAN(Thunderstorm Identification,Tracking,Analysis,and Nowcasting)算法使用单阈值进行识别,容易将相邻的多单体回波识别为一个风暴体。美国国家强风暴实验室提出的SCIT(Storm Cell Identification and Tracking)算法使用7个反射率因子阈值进行识别,可以较好地分离出风暴簇中的风暴单体,但它直接抛弃了低阈值的识别结果,导致风暴体内部结构信息的丢失。SCIT的这种识别策略可能会使处于初生阶段、强度较低的风暴体被错误地抛弃掉。TITAN和SCIT都无法完全识别出相邻风暴的虚假合并。为了解决这两个问题,文章提出了基于数学形态学的识别方法。该方法首先使用第1级阈值进行单阈值识别;其次,对识别得到的风暴体执行基于动态卷积模板的腐蚀操作,以消除虚假合并;然后,使用高一级阈值进行识别,并对识别得到的风暴体进行膨胀操作,当风暴体的边界在膨胀的过程中相互之间接触,或接触到了原来较低阈值识别的风暴体的边界时,则停止膨胀过程;最后,逐次使用更高级别的阈值进行识别,并在每一级阈值的识别过程中执行腐蚀和膨胀操作。试验结果表明,通过在多阈值识别的过程中综合使用膨胀和腐蚀操作,基于数学形态学的三维风暴体识别方法不仅能够成功地识别出风暴体的虚假合并,同时还能在从风暴簇中分离出相距较近的风暴单体时,尽可能多地保留风暴单体的内部结构信息。  相似文献   
12.
韩雷  陆正  张辉 《安徽地质》2021,31(3):221-224
本文阐述了研究区地质特征及成矿地质条件,对控矿因素进行分析和探讨,总结成矿规律,为下一步找矿方向提出建议.安徽泾县芦椒山铅锌多金属矿矿床类型为中低温热液型矿床,矿体受控于北东向构造,具有钼—铜—铅锌分带特征、成矿温度自中高温到中低温转变的特点,含矿热液物质来源于燕山期上侵的岩浆,与燕山期茂林岩体及中酸性脉岩相关.  相似文献   
13.
数值天气预报作为现代天气预报的主流技术方法,近年来不断朝着精细化方向发展,但预报误差至今仍无法避免.文中在CU-Net模型中引入稠密卷积模块形成数值预报要素偏差订正模型Dense-CUnet,在此基础上进一步融合多种气象要素和地形特征构建了Fuse-CUnet模型,开展不同模型的偏差订正试验和对比分析.以均方根误差(R...  相似文献   
14.
葛长山  韩雷  陆正 《江苏地质》2023,47(1):106-112
预应力锚杆支护是一种较新型的锚固技术,但实际工程设计都偏保守,造成经济浪费,因此实际设计过程中存在诸多预应力锚杆参数优化问题。使用有限元分析软件Abaqus模拟锚杆长度、锚固角度、预应力、直径诸因素的变化对边坡稳定性的影响趋势,通过正交试验优化设计得出最优组合方案,为预应力锚杆的相关设计提供科学参考,避免工程建设的安全隐患或不合理投资。  相似文献   
15.
为了进一步提高RISE系统高分辨率网格化预报产品的准确率,同时考虑到深度学习近年来在地学领域的有效应用,采用2019—2021年高分辨率RISE系统数据,设计出卷积神经网络模型Rise-Unet,实现了未来4~12 h地面2 m温度、2 m相对湿度、10 m-U风速以及10 m-V风速预报结果的订正。订正试验结果表明,采用均方根误差和平均绝对误差作为评分标准,与RISE原始预报结果相比,基于Rise-Unet模型可以有效提高温湿风预报结果的准确率。该基于深度学习的Rise-Unet偏差订正技术可应用于RISE系统的后处理模块,对提升RISE系统百米级分辨率或其他高分辨率模式系统格点预报水平具有重要的科学意义和应用价值。  相似文献   
16.
以两个黑龙江省江河堤防生态护坡试验工程为例,介绍了几种寒冷地区江河堤防的生态护坡技术措施,既能提高堤防工程的行洪安全性,又修护了河流的生态环境,且运行效果良好。  相似文献   
17.
内蒙古武川县赵井沟钽铌多金属矿床是近年来华北板块北缘新发现的大型稀有金属矿床,然而前人对该矿床的形成时代以及构造背景存在较大争议。本文以与成矿关系密切的天河石化花岗岩和钠长石化花岗岩为研究对象,开展了岩相学、岩石地球化学、岩浆和热液锆石LA-ICP-MS U-Pb年代学及Lu-Hf同位素的研究,探讨了岩浆源区性质和成岩成矿的构造环境。研究结果表明,钠长石化花岗岩中热液锆石加权平均年龄为118.9 ± 1.8Ma;天河石化花岗岩岩浆锆石年龄为116±2Ma,热液锆石加权平均年龄结果为112.8±2.2Ma;热液锆石年龄略晚于岩浆锆石,说明热液锆石是在岩浆演化最后的熔体-流体相互作用阶段形成的。天河石化花岗岩和钠长石化花岗岩在主量元素上富硅、碱和铝,贫镁、钙、铁、钛和磷;在微量元素上均富集Rb、Th、U、Nb、Ta、Hf,强烈亏损Ba、Sr;其轻重稀土元素分异不明显,具有强烈的Eu负异常。岩体中发育以钠长石化,天河石化为主的蚀变,稀土元素呈现似M型"四分组"效应,Nb/Ta小于5,表明天河石化、钠长石化花岗岩经历了熔体和流体的相互作用。Lu-Hf同位素分析结果显示较负的ε_(Hf)(t)值(天河石化花岗岩:-10.91~-8.17;钠长石化花岗岩:-10.98~-9.19),其对应的两阶段模式年龄t_(DM2)分别为1689~1867Ma和1762~1871Ma,暗示富含Nb、Ta的中元古代渣尔泰山群、白云鄂博群为其岩浆源岩或提供了成岩、成矿物质。燕山晚期伸展的构造背景下,玄武质岩浆高位底侵富铌钽地壳造成减压部分熔融而形成的岩浆,岩浆在F、Cl等挥发组分的作用下发生结晶分异作用,造成铌、钽等成矿物质初步富集,并在岩浆晚期先后发生了以钠长石化、天河石化为代表的两期自交代作用及Nb、Ta的矿化作用,形成赵井沟钽铌多金属稀有矿床,该矿床为岩浆结晶分异-热液自交代作用混合成因。  相似文献   
18.
本文以传统机器学习算法XGBoost和深度学习算法CU-Net为基础,针对北京快速更新无缝隙融合与集成预报系统(RISE系统)预报的北京冬奥会延庆及张家口赛区100米分辨率的冬季近地面10 m风速数据,进行每日逐小时起报的未来逐6小时间隔的冬奥高山站点及其周边地区风速预报偏差订正方法研究和对比分析。对于站点订正,首先将RISE系统预测的10 m风速插值到对应的自动气象站站点,然后根据风速等级表归类,针对每个分类单独构建XGBoost模型,每个区间模型合并后形成L-XGBoost,使用均方根误差和预报准确率作为评分标准,结果表明风速归类的L-XGBoost算法订正效果比不归类的原始XGBoost模型有一定提升,说明在传统机器学习中加入归类方法有助于改善复杂山地站点风速预报技巧。对于站点及其周边地区风速订正,本文在CUNet模型基础上,通过引入不同深度的CU-Net子网络,构建了新的算法模型CU-Net++,并考虑了预报日变化误差和复杂地形对10 m风速的影响,以自动气象站为中心构建空间小区域样本数据,对RISE系统风速预报偏差进行订正。试验结果表明,CU-Net和CU-Net++均可以充...  相似文献   
19.
为实现煤巷聚焦多点电源有效探测电场聚焦深度扫描和偏转角度扫描,准确把握有效探测电场的变化规律,根据超前扫描探测机理,利用高斯定理,采用两种不同的方法对积分过程进行求解,推导单根有限长均匀带电直线电极的电场线方程。利用电场线空间分布的对称性,归纳推理共面多电极电场线方程。改变聚焦屏流比系数,计算有效探测电场线边界线方程,分析平均电流密度及空间立体角变化规律;同时改变聚焦屏流比系数和偏转屏流比系数,分析电场边界线下边界角及偏转角变化规律,确定出超前扫描探测主电极与约束电极发射电流取值范围。此研究为野外开展聚焦多点电源电法勘探提供技术指导,对完善聚焦电法勘探机理,推动该技术理论发展具有重要意义。   相似文献   
20.
韩雷  王洪庆  谭晓光  林隐静 《气象》2007,33(1):3-10
基于雷达数据的风暴体识别、追踪及预警方法是最早出现的临近预报技术,也是天气雷达系统和强天气预警业务的基本组成部分。风暴体识别、追踪及预警方法可以分为三大类:持续性预报法、交叉相关法和单体质心法,它们都属于外推预报法。其中,持续性预报法目前已经被后两者取代。首先较详细地介绍了交叉相关法和单体质心法的研究历史和主要算法,然后集中介绍了近几年来在外推预报基础上发展起来的一些新方法。最后,结合悉尼奥运会期间的FDP项目,讨论了临近预报技术的检验和准确性评价,重点介绍了列联表方法。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号