首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   564篇
  免费   49篇
  国内免费   6篇
测绘学   33篇
大气科学   32篇
地球物理   151篇
地质学   234篇
海洋学   38篇
天文学   89篇
综合类   1篇
自然地理   41篇
  2024年   2篇
  2023年   5篇
  2022年   3篇
  2021年   15篇
  2020年   11篇
  2019年   18篇
  2018年   23篇
  2017年   23篇
  2016年   30篇
  2015年   23篇
  2014年   21篇
  2013年   34篇
  2012年   21篇
  2011年   31篇
  2010年   21篇
  2009年   37篇
  2008年   25篇
  2007年   31篇
  2006年   27篇
  2005年   25篇
  2004年   21篇
  2003年   16篇
  2002年   17篇
  2001年   8篇
  2000年   13篇
  1999年   7篇
  1998年   9篇
  1997年   7篇
  1996年   6篇
  1995年   6篇
  1994年   4篇
  1993年   6篇
  1992年   2篇
  1991年   4篇
  1990年   4篇
  1989年   3篇
  1988年   4篇
  1987年   2篇
  1986年   2篇
  1985年   3篇
  1984年   5篇
  1983年   3篇
  1982年   5篇
  1981年   5篇
  1980年   3篇
  1979年   5篇
  1976年   4篇
  1973年   2篇
  1965年   2篇
  1964年   3篇
排序方式: 共有619条查询结果,搜索用时 182 毫秒
101.
Evaporation from wet-canopy (\(E_\mathrm{C}\)) and stem (\(E_\mathrm{S}\)) surfaces during rainfall represents a significant portion of municipal-to-global scale hydrologic cycles. For urban ecosystems, \(E_\mathrm{C}\) and \(E_\mathrm{S}\) dynamics play valuable roles in stormwater management. Despite this, canopy-interception loss studies typically ignore crown-scale variability in \(E_\mathrm{C}\) and assume (with few indirect data) that \(E_\mathrm{S}\) is generally \({<}2\%\) of total wet-canopy evaporation. We test these common assumptions for the first time with a spatially-distributed network of in-canopy meteorological monitoring and 45 surface temperature sensors in an urban Pinus elliottii tree row to estimate \(E_\mathrm{C}\) and \(E_\mathrm{S}\) under the assumption that crown surfaces behave as “wet bulbs”. From December 2015 through July 2016, 33 saturated crown periods (195 h of 5-min observations) were isolated from storms for determination of 5-min evaporation rates ranging from negligible to 0.67 \(\hbox {mm h}^{-1}\). Mean \(E_\mathrm{S}\) (0.10 \(\hbox {mm h}^{-1}\)) was significantly lower (\(p < 0.01\)) than mean \(E_\mathrm{C}\) (0.16 \(\hbox {mm h}^{-1}\)). But, \(E_\mathrm{S}\) values often equalled \(E_\mathrm{C}\) and, when scaled to trunk area using terrestrial lidar, accounted for 8–13% (inter-quartile range) of total wet-crown evaporation (\(E_\mathrm{S}+E_\mathrm{C}\) scaled to surface area). \(E_\mathrm{S}\) contributions to total wet-crown evaporation maximized at 33%, showing a general underestimate (by 2–17 times) of this quantity in the literature. Moreover, results suggest wet-crown evaporation from urban tree rows can be adequately estimated by simply assuming saturated tree surfaces behave as wet bulbs, avoiding problematic assumptions associated with other physically-based methods.  相似文献   
102.
This paper presents an examination of the timescale of phase transition behaviour of a series of salts known to cause damage to wall paintings and other cultural property. The rate of deliquescence and crystallisation of single salts (nitromagnesite and halite) under different RH regimes, and the extent to which this was affected when mixed with other salts (niter, nitratite and gypsum), was investigated. The study was conducted using simple conventional techniques (mass measurements over time) and also using an innovative new method: timelapse video imaging with online data annotation. The results demonstrate the synergy gained from combining video imaging with environmental data in reference to time in the study of salt phase changes: where it revealed new information concerning the kinetics of deliquescence and crystallisation. The implications of these results for the implementation of environmental control measures within historic buildings are discussed.
Alison SawdyEmail:
  相似文献   
103.
The Gemmi fault is a prominent NW–SE striking lineament that crosses the Gemmi Pass in the central Swiss Alps. A multidisciplinary investigation of this structure that included geological mapping, joint profiling, cathodoluminescence and scanning electron microscopy, stable isotope measurements, luminescence- and U-TH-dating, 3D ground penetrating radar (GPR) surveying and trenching reveals a history of fault movements from the Miocene to the Holocene. The main fault zone comprises a 0.5–3 m thick calcite cataclasite formed during several cycles of veining and brittle deformation. Displaced Cretaceous rock layers show an apparent dextral slip of 10 m along the fault.A detailed study of a small sediment-filled depression that crosses the fault provides evidence for a post-glacial reactivation of the fault. A trench excavated across the fault exposed a Late-Glacial-age loess layer and late Holocene colluvial-like slope-wash deposits that showed evidence for fault displacement of a few centimeters, indicating a recent strike-slip reactivation of the fault. Focal mechanisms of recent instrumentally recorded earthquakes are consistent with our findings that show that the fault at the Gemmi Pass, together with other parallel faults in this area, may be reactivated in today's stress field. Taking together all the observations of its ancient and recent activity, the Gemmi fault can be viewed as a window through geological space and time.  相似文献   
104.
River discharge and nutrient measurements are subject to aleatory and epistemic uncertainties. In this study, we present a novel method for estimating these uncertainties in colocated discharge and phosphorus (P) measurements. The “voting point”‐based method constrains the derived stage‐discharge rating curve both on the fit to available gaugings and to the catchment water balance. This helps reduce the uncertainty beyond the range of available gaugings and during out of bank situations. In the example presented here, for the top 5% of flows, uncertainties are shown to be 139% using a traditional power law fit, compared with 40% when using our updated “voting point” method. Furthermore, the method is extended to in situ and lab analysed nutrient concentration data pairings, with lower uncertainties (81%) shown for high concentrations (top 5%) than when a traditional regression is applied (102%). Overall, for both discharge and nutrient data, the method presented goes some way to accounting for epistemic uncertainties associated with nonstationary physical characteristics of the monitoring site.  相似文献   
105.
Fault-controlled hydrothermal dolomitization in tectonically complex basins can occur at any depth and from different fluid compositions, including ‘deep-seated’, ‘crustal’ or ‘basinal’ brines. Nevertheless, many studies have failed to identify the actual source of these fluids, resulting in a gap in our knowledge on the likely source of magnesium of hydrothermal dolomitization. With development of new concepts in hydrothermal dolomitization, the study aims in particular to test the hypothesis that dolomitizing fluids were sourced from either seawater, ultramafic carbonation or a mixture between the two by utilizing the Cambrian Mount Whyte Formation as an example. Here, the large-scale dolostone bodies are fabric-destructive with a range of crystal fabrics, including euhedral replacement (RD1) and anhedral replacement (RD2). Since dolomite is cross-cut by low amplitude stylolites, dolomitization is interpreted to have occurred shortly after deposition, at a very shallow depth (<1 km). At this time, there would have been sufficient porosity in the mudstones for extensive dolomitization to occur, and the necessary high heat flows and faulting associated with Cambrian rifting to transfer hot brines into the near surface. While the δ18Owater and 87Sr/86Sr ratios values of RD1 are comparable with Cambrian seawater, RD2 shows higher values in both parameters. Therefore, although aspects of the fluid geochemistry are consistent with dolomitization from seawater, very high fluid temperature and salinity could be suggestive of mixing with another, hydrothermal fluid. The very hot temperature, positive Eu anomaly, enriched metal concentrations, and cogenetic relation with quartz could indicate that hot brines were at least partially sourced from ultramafic rocks, potentially as a result of interaction between the underlying Proterozoic serpentinites and CO2-rich fluids. This study highlights that large-scale hydrothermal dolostone bodies can form at shallow burial depths via mixing during fluid pulses, providing a potential explanation for the mass balance problem often associated with their genesis.  相似文献   
106.
勘查植物地球化学是通过分析植物器官来获取成矿元素信息的地球化学方法。我国学者在干旱荒漠区、森林沼泽区、半干旱和湿润半湿润中低山景观区开展了系统的勘查植物地球化学试验,厘定了一批适用于勘查植物地球化学调查的植物,为该方法的推广及应用奠定了良好基础。今后应进一步加强对勘查植物地球化学异常产生的机理、勘查植物地球化学数据库及指南建立、勘查植物地球化学异常遥感应用等方面的研究,更好地利用勘查植物地球化学方法服务矿产勘查工作。  相似文献   
107.
108.
The mechanics of water retention in unsaturated granular media is of critical importance to a broad range of disciplines including soil science, geotechnical engineering, hydrology and agriculture. Fundamental to water retention is the relationship between degree of saturation and suction, referred to as the water retention curve (WRC). The majority of WRC models are empirically based and seldom incorporate physically meaningful parameters. This study presents an analytical model for the WRC that considers separate contributions from fully filled pores and partially filled pores containing liquid bridges. A recently established unique k-gamma pore volume distribution function for randomly assembled monodisperse granular materials is adopted to determine the contributions of fully filled pores. Calculation of the contribution of residual pore water retained in partially filled pores is undertaken by representing pores as individual cells shaped as platonic shapes of various sizes and determining the volume of all liquid bridges suspended between particles within the pore cells. Weighting factors for the various cell types are obtained from the pore volume distribution to determine the relative contribution of different pore cell geometries to the total residual pore water. The combined model accurately describes experimental data for monodisperse spherical glass beads for both wetting and drying, even though the underlying assumptions do not reflect exactly the complex, interconnected and highly irregular geometry of the pore space. A single parameter provides the lateral shift between the wetting and drying curves. The results of this study provide a geometric understanding of the mechanisms of water retention in granular media.  相似文献   
109.
Mud volcanism is commonly observed in Azerbaijan and the surrounding South Caspian Basin. This natural phenomenon is very similar to magmatic volcanoes but differs in one considerable aspect: Magmatic volcanoes are generally the result of ascending molten rock within the Earth's crust, whereas mud volcanoes are characterised by expelling mixtures of water, mud, and gas. The majority of mud volcanoes have been observed on ocean floors or in deep sedimentary basins, such as those found in Azerbaijan. Furthermore, their occurrences in Azerbaijan are generally closely associated with hydrocarbon reservoirs and are therefore of immense economic and geological interest. The broadside long‐offset transient electromagnetic method and the central‐loop transient electromagnetic method were applied to study the inner structure of such mud volcanoes and to determine the depth of a resistive geological formation that is predicted to contain the majority of the hydrocarbon reservoirs in the survey area. One‐dimensional joint inversion of central‐loop and long‐offset transient electromagnetic data was performed using the inversion schemes of Occam and Marquardt. By using the joint inversion models, a subsurface resistivity structure ranging from the surface to a depth of approximately 7 km was determined. Along a profile running perpendicular to the assumed strike direction, lateral resistivity variations could only be determined in the shallow depth range using the transient electromagnetic data. An attempt to resolve further two‐dimensional/three‐dimensional resistivity structures, representing possible mud migration paths at large depths using the long‐offset transient electromagnetic data, failed. Moreover, the joint inversion models led to ambiguous results regarding the depth and resistivity of the hydrocarbon target formation due to poor resolution at great depths (>5 km). Thus, 1D/2D modelling studies were subsequently performed to investigate the influence of the resistive terminating half‐space on the measured long‐offset transient electromagnetic data. The 1D joint inversion models were utilised as starting models for both the 1D and 2D modelling studies. The results tend to show that a resistive terminating half‐space, implying the presence of the target formation, is the favourable geological setting. Furthermore, the 2D modelling study aimed to fit all measured long‐offset transient electromagnetic Ex transients along the profile simultaneously. Consequently, 3125 2D forward calculations were necessary to determine the best‐fit resistivity model. The results are consistent with the 1D inversion, indicating that the data are best described by a resistive terminating half‐space, although the resistivity and depth cannot be determined clearly.  相似文献   
110.
We introduce a simple correction to coastal heads for constant‐density groundwater flow models that contain a coastal boundary, based on previous analytical solutions for interface flow. The results demonstrate that accurate discharge to the sea in confined aquifers can be obtained by direct application of Darcy's law (for constant‐density flow) if the coastal heads are corrected to ((α + 1)/α)hs ? B/2α, in which hs is the mean sea level above the aquifer base, B is the aquifer thickness, and α is the density factor. For unconfined aquifers, the coastal head should be assigned the value . The accuracy of using these corrections is demonstrated by consistency between constant‐density Darcy's solution and variable‐density flow numerical simulations. The errors introduced by adopting two previous approaches (i.e., no correction and using the equivalent fresh water head at the middle position of the aquifer to represent the hydraulic head at the coastal boundary) are evaluated. Sensitivity analysis shows that errors in discharge to the sea could be larger than 100% for typical coastal aquifer parameter ranges. The location of observation wells relative to the toe is a key factor controlling the estimation error, as it determines the relative aquifer length of constant‐density flow relative to variable‐density flow. The coastal head correction method introduced in this study facilitates the rapid and accurate estimation of the fresh water flux from a given hydraulic head measurement and allows for an improved representation of the coastal boundary condition in regional constant‐density groundwater flow models.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号