首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The purpose of this paper is to determine uncertainty in the gauged range of the stage–gauged discharge relationship for 622 rating curves from 171 Australian Bureau of Meteorology Hydrologic Reference streamgauging Stations (HRS). Water agencies use many methods to establish rating curves. Here we adopt a consistent method across all stations and develop rating curves based on Chebyshev polynomials, and estimate uncertainties from standard regression errors in which residuals from the polynomials are adjusted to ensure they are homoscedastic and normally distributed. Uncertainty in input water level is also taken into account. The median uncertainties in mean response of the available gauged discharge relationship at median daily discharges for the HRS dataset range from +4.5 to ?4.2% (95% confidence band) and for individual gaugings from +29 to ?22% incorporating a water level uncertainty of ±4 mm. The uncertainties estimated are consistent with values estimated in Australia and elsewhere.  相似文献   

2.
In order to quantify total error affecting hydrological models and predictions, we must explicitly recognize errors in input data, model structure, model parameters and validation data. This paper tackles the last of these: errors in discharge measurements used to calibrate a rainfall‐runoff model, caused by stage–discharge rating‐curve uncertainty. This uncertainty may be due to several combined sources, including errors in stage and velocity measurements during individual gaugings, assumptions regarding a particular form of stage–discharge relationship, extrapolation of the stage–discharge relationship beyond the maximum gauging, and cross‐section change due to vegetation growth and/or bed movement. A methodology is presented to systematically assess and quantify the uncertainty in discharge measurements due to all of these sources. For a given stage measurement, a complete PDF of true discharge is estimated. Consequently, new model calibration techniques can be introduced to explicitly account for the discharge error distribution. The method is demonstrated for a gravel‐bed river in New Zealand, where all the above uncertainty sources can be identified, including significant uncertainty in cross‐section form due to scour and re‐deposition of sediment. Results show that rigorous consideration of uncertainty in flow data results in significant improvement of the model's ability to predict the observed flow. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
The measurement of discharge is fundamental in nutrient load estimation. Because of our ability to monitor discharge routinely, it is generally assumed that the associated uncertainty is low. This paper challenges this preconception, arguing that discharge uncertainty should be explicitly taken into account to produce robust statistical analyses. In many studies, paired discharge and chemical datasets are used to calculate ‘true’ loads and used as the benchmark to compare with other load estimates. This paper uses two years of high frequency (daily and sub‐hourly) discharge and nutrient concentration data (nitrate‐N and total phosphorus (TP)) collected at four field sites as part of the Hampshire Avon Demonstration Test Catchment (DTC) programme. A framework for estimating observational nutrient load uncertainty was used which combined a flexible non‐parametric approach to characterising discharge uncertainty, with error modelling that allowed the incorporation of errors which were heteroscedastic and temporally correlated. The results showed that the stage–discharge relationships were non‐stationary, and observational uncertainties from ±2 to 25% were recorded when the velocity–area method was used. The variability in nutrient load estimates ranged from 1.1 to 9.9% for nitrate‐N and from 3.3 to 10% for TP when daily laboratory data were used, rising to a maximum of 9% for nitrate‐N and 83% for TP when the sensor data were used. However, the sensor data provided a better representation of the ‘true’ load as storm events are better represented temporally, posing the question: is it more beneficial to have high frequency, lower precision data or lower frequency but higher precision data streams to estimate nutrient flux responses in headwater catchments? Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
We designed and evaluated a “tube seepage meter” for point measurements of vertical seepage rates (q), collecting groundwater samples, and estimating vertical hydraulic conductivity (K) in streambeds. Laboratory testing in artificial streambeds show that seepage rates from the tube seepage meter agreed well with expected values. Results of field testing of the tube seepage meter in a sandy‐bottom stream with a mean seepage rate of about 0.5 m/day agreed well with Darcian estimates (vertical hydraulic conductivity times head gradient) when averaged over multiple measurements. The uncertainties in q and K were evaluated with a Monte Carlo method and are typically 20% and 60%, respectively, for field data, and depend on the magnitude of the hydraulic gradient and the uncertainty in head measurements. The primary advantages of the tube seepage meter are its small footprint, concurrent and colocated assessments of q and K, and that it can also be configured as a self‐purging groundwater‐sampling device.  相似文献   

5.
Three‐dimensional (3D) printing is capable of transforming intricate digital models into tangible objects, allowing geoscientists to replicate the geometry of 3D pore networks of sedimentary rocks. We provide a refined method for building scalable pore‐network models (“proxies”) using stereolithography 3D printing that can be used in repeated flow experiments (e.g., core flooding, permeametry, porosimetry). Typically, this workflow involves two steps, model design and 3D printing. In this study, we explore how the addition of post‐processing and validation can reduce uncertainty in the 3D‐printed proxy accuracy (difference of proxy geometry from the digital model). Post‐processing is a multi‐step cleaning of porous proxies involving pressurized ethanol flushing and oven drying. Proxies are validated by: (1) helium porosimetry and (2) digital measurements of porosity from thin‐section images of 3D‐printed proxies. 3D printer resolution was determined by measuring the smallest open channel in 3D‐printed “gap test” wafers. This resolution (400 µm) was insufficient to build porosity of Fontainebleau sandstone (~13%) from computed tomography data at the sample's natural scale, so proxies were printed at 15‐, 23‐, and 30‐fold magnifications to validate the workflow. Helium porosities of the 3D‐printed proxies differed from digital calculations by up to 7% points. Results improved after pressurized flushing with ethanol (e.g., porosity difference reduced to ~1% point), though uncertainties remain regarding the nature of sub‐micron “artifact” pores imparted by the 3D printing process. This study shows the benefits of including post‐processing and validation in any workflow to produce porous rock proxies.  相似文献   

6.
Hypothesis testing about catchment functioning with conceptual hydrological models is affected by uncertainties in the model representation of reality as well as in the observed data used to drive and evaluate the model. We formulated a learning framework to investigate the role of observational uncertainties in hypothesis testing using conceptual models and applied it to the relatively data‐scarce tropical Sarapiqui catchment in Costa Rica. Observational uncertainties were accounted for throughout the framework that incorporated different choices of model structures to test process hypotheses, analyses of parametric uncertainties and effects of likelihood choice, a posterior performance analysis and (iteratively) formulation of new hypotheses. Estimated uncertainties in precipitation and discharge were linked to likely non‐linear near‐surface runoff generation and the potentially important role of soils in mediating the hydrological response. Some model‐structural inadequacies could be identified in the posterior analyses (supporting the need for an explicit soil‐moisture routine to match streamflow dynamics), but the available information about the observational uncertainties prevented conclusions about other process representations. The importance of epistemic data errors, the difficulty in quantifying them and their effect on model simulations was illustrated by an inconsistent event with long‐term effects. Finally we discuss the need for new data, new process hypotheses related to deep groundwater losses, and conclude that observational uncertainties need to be accounted for in hypothesis testing to reduce the risk of drawing incorrect conclusions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
Hyporheic exchange is the interaction of river water and groundwater, and is difficult to predict. One of the largest contributions to predictive uncertainty for hyporheic exchange has been attributed to the representation of heterogeneous subsurface properties. Our study evaluates the trade-offs between intrinsic (irreducible) and epistemic (reducible) model errors when choosing between homogeneous and highly complex subsurface parameter structures. We modeled the Steinlach River Test Site in Southwest Germany using a fully coupled surface water-groundwater model to simulate hyporheic exchange and to assess the predictive errors and uncertainties of transit time distributions. A highly parameterized model was built, treated as a “virtual reality” and used as a reference. We found that if the parameter structure is too simple, it will be limited by intrinsic model errors. By increasing subsurface complexity through the addition of zones or heterogeneity, we can begin to exchange intrinsic for epistemic errors. Thus, the appropriate level of detail to represent the subsurface depends on the acceptable range of intrinsic structural errors for the given modeling objectives and the available site data. We found that a zonated model is capable of reproducing the transit time distributions of a more detailed model, but only if the geological structures are known. An interpolated heterogeneous parameter field (cf. pilot points) showed the best trade-offs between the two errors, indicating fitness for practical applications. Parameter fields generated by multiple-point geostatistics (MPS) produce transit time distributions with the largest uncertainties, however, these are reducible by additional hydrogeological data, particularly flux measurements.  相似文献   

8.
Incremental dynamic analysis (IDA) has been extended by introducing a set of structural models in addition to the set of ground motion records which is employed in IDA analysis in order to capture record‐to‐record variability. The set of structural models reflects epistemic (modeling) uncertainties, and is determined by utilizing the latin hypercube sampling (LHS) method. The effects of both aleatory and epistemic uncertainty on seismic response parameters are therefore considered in extended IDA analysis. The proposed method has been applied to an example of the four‐storey‐reinforced concrete frame, for which pseudo‐dynamic tests were performed at the ELSA Laboratory, Ispra. The influence of epistemic uncertainty on the seismic response parameters is presented in terms of summarized IDA curves and dispersion measures. The results of extended IDA analysis are compared with the results of IDA analysis, and the sensitivity of the seismic response parameters to the input random variable using the LHS method is discussed. It is shown that epistemic uncertainty does not have significant influence on the seismic response parameters in the range far from collapse, but could have a significant influence on collapse capacity. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
Cold‐based polar glacier watersheds contain well‐defined supraglacial, ice‐marginal, and proglacial elements that differ in their degree of hydrologic connectivity, sources of water (e.g., snow, ice, and/or sediment pore water), meltwater residence times, allochthonous and autochthonous nutrient, and sediment loads. We investigated 11 distinct hydrological units along the supraglacial, ice marginal, and proglacial flow paths that drain Joyce Glacier in the McMurdo Dry Valleys of Antarctica. We found that these units play unique and important roles as sources and/or sinks for dissolved inorganic nitrogen and dissolved inorganic phosphorus and for specific fractions of dissolved organic matter (DOM) as waters are routed from the glacier into nutrient‐poor downstream ecosystems. Changes in nutrient export from the glacial system as a whole were observed as the routing and residence times of meltwater changed throughout the melt season. The concentrations of major ions in the proglacial stream were inversely proportional to discharge, such that there was a relatively constant “trickle” of these solutes into downstream ecosystems. In contrast, NO3? concentrations generally increased with discharge, resulting in delivery of episodic pulses of dissolved inorganic nitrogen‐rich water (“treats”) into those same ecosystems during high discharge events. DOM concentrations or fluorescence did not correlate with discharge rate, but high variability in DOM concentrations or fluorescence suggests that DOM may be exported downstream as episodic treats, but with spatial and/or temporal patterns that remain poorly understood. The strong, nutrient‐specific responses to changes in hydrology suggest that polar glacier drainage systems may export meltwater with nutrient compositions that vary within and between melt seasons and watersheds. Because nutrient dynamics identified in this study differ between glacier watersheds with broadly similar hydrology, climate, and geology, we emphasize the need to develop conceptual models of nutrient export that thoroughly integrate the biogeochemical and hydrological processes that control the sources, fate, and export of nutrients from each system.  相似文献   

10.
The contribution discusses the problems with modelling design floods for water structures. The statistical extrapolations of observed flood series of, for example, 80 years “only” to the annual exceedance probability AEP = 0.01 is difficult due to the large variability in extreme values. For large dams, however, the AEP = 0.001 or 0.0001 is required. Most of the uncertainties in hydrological modelling are epistemic (uncertainties in model structure, model parameters, inputs, calibration data, and in measurements) and moreover some measurements can be disinformative. With powerful computers, it is now possible to produce very long series (100 to100,000 years in hourly time step) using precipitation and temperatures computed with a weather model. Within the framework of the Generalised Likelihood Uncertainty Estimation (GLUE) many (thousands) of such continuous simulations are produced and compared to the observed historical data. According to Keith Beven's Manifesto for the equifinality thesis the differences between modelled and observed values should not be larger than some limits of acceptability based on what is known about errors in the input and output observations used for model evaluation (e.g., for flow the current metering data are used). The unacceptable realisations are rejected. We have been working with the frequency version of TOPMODEL in various versions according to the unique characteristics of each catchment. Design hydrographs for water structures are then extracted from the acceptable realisations. The continuous simulation with uncertainty estimation seems nowadays the most promising method of computing design hydrographs for important water structures, even if issues associated with epistemic uncertainty of model assumptions remain.  相似文献   

11.
Discharge time series' are one of the core data sets used in hydrological investigations. Errors in the data mainly occur through uncertainty in gauging (measurement uncertainty) and uncertainty in determination of the stage–discharge relationship (rating curve uncertainty). Thirty‐six flow gauges from the Namoi River catchment, Australia, were examined to explore how rating curve uncertainty affects gauge reliability and uncertainty of observed flow records. The analysis focused on the deviations in gaugings from the rating curves because standard (statistical) uncertainty methods could not be applied. Deviations of greater/lesser than 10% were considered significant to allow for a measurement uncertainty threshold of 10%, determined from quality coding of gaugings and operational procedures. The deviations in gaugings were compared against various factors to examine trends and identify major controls, including stage height, date, month, rating table, gauging frequency and quality, catchment area and type of control. The analysis gave important insights into data quality and the reliability of each gauge, which had previously not been recognized. These included identification of more/less reliable periods of record, which varied widely between gauges, and identification of more/less reliable parts of the hydrograph. Most gauges showed significant deviations at low stages, affecting the determination of low flows. This was independent of the type of gauge control, with many gauges experiencing problems in the stability of the rating curve, likely as a result of sediment flux. The deviations in gaugings also have widespread application in modelling, for example, informing suitable calibration periods and defining error distributions. This paper demonstrates the value and importance of undertaking qualitative analyses of observed records. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Rainfall–runoff models are widely used to predict flows using observed (instrumental) time series of air temperature and precipitation as inputs. Poor model performance is often associated with difficulties in estimating catchment‐scale meteorological variables from point observations. Readily available gridded climate products are an underutilized source of temperature and precipitation time series for rainfall–runoff modelling, which may overcome some of the performance issues associated with poor‐quality instrumental data in small headwater monitoring catchments. Here we compare the performance of instrumental measured and E‐OBS gridded temperature and precipitation time series as inputs in the rainfall–runoff models “PERSiST” and “HBV” for flow prediction in six small Swedish catchments. For both models and most catchments, the gridded data produced statistically better simulations than did those obtained using instrumental measurements. Despite the high correspondence between instrumental and gridded temperature, both temperature and precipitation were responsible for the difference. We conclude that (a) gridded climate products such as the E‐OBS dataset could be more widely used as alternative input to rainfall–runoff models, even when instrumental measurements are available, and (b) the processing applied to gridded climate products appears to provide a more realistic approximation of small catchment‐scale temperature and precipitation patterns needed for flow simulations. Further research on this issue is needed and encouraged.  相似文献   

13.
Nutrient fluxes from developed catchments are often a significant factor in the declining water quality and ecological functioning in estuaries. Determining the relative contributions of surface water and groundwater discharge to nutrient‐sensitive estuaries is required because these two pathways may be characterized by different nutrient concentrations and temporal variability, and may thus require different remedial actions. Quantifying the volumetric discharge of groundwater, which may occur via diffuse seepage or springs, remains a significant challenge. In this contribution, the total discharge of freshwater, including groundwater, to two small nutrient‐sensitive estuaries in Prince Edward Island (Canada) is assessed using a unique combination of airborne thermal infrared imaging, direct discharge measurements in streams and shoreline springs, and numerical simulation of groundwater flow. The results of the thermal infrared surveys indicate that groundwater discharge occurs at discrete locations (springs) along the shoreline of both estuaries, which can be attributed to the fractured sandstone bedrock aquifer. The discharge measured at a sub‐set of the springs correlates well with the area of the thermal signal attributed to each discharge location and this information was used to determine the total spring discharge to each estuary. Stream discharge is shown to be the largest volumetric contribution of freshwater to both estuaries (83% for Trout River estuary and 78% for McIntyre Creek estuary); however, groundwater discharge is significant at between 13% and 18% of the total discharge. Comparison of the results from catchment‐scale groundwater flow models and the analysis of spring discharge suggest that diffuse seepage to both estuaries comprises only about 25% of the total groundwater discharge. The methods employed in this research provide a useful framework for determining the relative volumetric contributions of surface water and groundwater to small estuaries and the findings are expected to be relevant to other fractured sandstone coastal catchments in Atlantic Canada. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
The estimation of the seismological parameters of historical earthquakes is a key step when performing seismic hazard assessment in moderate seismicity regions as France. We propose an original method to assess magnitude and depth of historical earthquakes using intensity data points. A flowchart based on an exploration tree (ET) approach allows to apply a consistent methodology to all the different configurations of the earthquake macroseismic field and to explore the inherent uncertainties. The method is applied to French test case historical earthquakes, using the SisFrance (BRGM, IRSN, EDF) macroseismic database and the intensity prediction equations (IPEs) calibrated in the companion paper (Baumont et al. Bull Earthq Eng, 2017). A weighted least square scheme allowing for the joint inversion of magnitude and depth is applied to earthquakes that exhibit a decay of intensity with distance. Two cases are distinguished: (1) a “Complete ET” is applied to earthquakes located within the metropolitan territory, while (2) a “Simplified ET” is applied to both, offshore and cross border events, lacking information at short distances but disposing of reliable data at large ones. Finally, a priori-depth-based magnitude computation is applied to ancient or poorly documented events, only described by single/sporadic intensity data or few macroseismic testimonies. Specific processing of “felt” testimonies allows exploiting this complementary information for poorly described earthquakes. Uncertainties associated to magnitude and depth estimates result from both, full propagation of uncertainties related to the original macroseismic information and the epistemic uncertainty related to the IPEs selection procedure.  相似文献   

15.
The acquisition of reliable discharge estimates is crucial in hydrological studies. This study demonstrates a promising acoustic method for measuring streamflow at high sampling rate for a long period using the fluvial acoustic tomography system (FATS). The FATS recently emerged as an innovative technique for continuous measurements of streamflow. In contrast to the traditional point/transect measurements of discharge, the FATS enables the depth‐averaged and range‐averaged flow velocity along the ray path to be measured in a fraction of a second. The field test was conducted in a shallow gravel‐bed river (0.9 m deep under low‐flow conditions, 115 m wide) for 1 month. The parameters (stream direction and bottom elevation) required for calculating the streamflow were deduced by a nonlinear regression to the discharge data from the well‐established rating curve. The cross‐sectional average velocities were automatically calculated from the acoustic data, which were collected on both riverbanks every 30 s. The FATS was connected to the internet so that the real‐time flow data could be obtained. The FATS captured discharge variations at a cut‐off frequency of approximately 70 day?1. The stream exhibited temporal discharge changes at multiple time scales ranging from a few tens of minutes to days. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
River discharge is currently monitored by a diminishing network of gauges, which provide a spatially incomplete picture of global discharges. This study assimilated water level information derived from a fused satellite Synthetic Aperture Radar (SAR) image and digital terrain model (DTM) with simulations from a coupled hydrological and hydrodynamic model to estimate discharge in an un‐gauged basin scenario. Assimilating water level measurements led to a 79% reduction in ensemble discharge uncertainty over the coupled hydrological hydrodynamic model alone. Measurement bias was evident, but the method still provided a means of improving estimates of discharge for high flows. The study demonstrates the potential of currently available synthetic aperture radar imagery to reduce discharge uncertainty in un‐gauged basins when combined with model simulations in a data assimilation framework, where sufficient topographic data are available. The work is timely because in the near future the launch of satellite radar missions will lead to a significant increase in the volume of data available for space‐borne discharge estimation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
The possibility of contactless remote estimation of the temperature in the Earth’s interior from surface magnetotelluric (MT) measurements is examined. The neuronet analysis of MT and temperature measurements in the Bishkek geodynamic research area (the Northern Tien Shan) showed that a contactless electromagnetic geothermometer can in principle be realized. An optimal method including MT measurements and treatment of available thermograms is developed. The method minimizes uncertainties of the remote temperature estimation. The use of six to eight thermograms for calibration of electromagnetic data is shown to provide a 12% relative error of prediction, and a priori geological information available for the region under study can reduce this error. Areas of practical application of a contactless electromagnetic geothermometer are outlined.  相似文献   

18.
River discharge values, estimated using a rating curve, are subject to both random and epistemic errors. We present a new likelihood function, the ‘Voting Point’ likelihood that accounts for both error types and enables generation of multiple possible multisegment power‐law rating curve samples that aim to represent the total uncertainty. The rating curve samples can be used for subsequent discharge analysis that needs total uncertainty estimation, e.g. regionalisation studies or calculation of hydrological signatures. We demonstrate the method using four catchments with diverse rating curve error characteristics, where epistemic uncertainty sources include weed growth, scour and redeposition of the bed gravels in a braided river, and unconfined high flows. The results show that typically, the posterior rating curve distributions include all of the gauging points and succeed in representing the spread of discharge values caused by epistemic rating errors. We aim to provide a useful method for hydrology practitioners to assess rating curve, and hence discharge, uncertainty that is easily applicable to a wide range of catchments and does not require prior specification of the particular types and causes of epistemic error at the gauged location. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
Noninvasive geophysical estimation of soil moisture has potential to improve understanding of flow in the unsaturated zone for problems involving agricultural management, aquifer recharge, and optimization of landfill design and operations. In principle, several geophysical techniques (e.g., electrical resistivity, electromagnetic induction, and nuclear magnetic resonance) offer insight into soil moisture, but data‐analysis tools are needed to “translate” geophysical results into estimates of soil moisture, consistent with (1) the uncertainty of this translation and (2) direct measurements of moisture. Although geostatistical frameworks exist for this purpose, straightforward and user‐friendly tools are required to fully capitalize on the potential of geophysical information for soil‐moisture estimation. Here, we present MoisturEC, a simple R program with a graphical user interface to convert measurements or images of electrical conductivity (EC) to soil moisture. Input includes EC values, point moisture estimates, and definition of either Archie parameters (based on experimental or literature values) or empirical data of moisture vs. EC. The program produces two‐ and three‐dimensional images of moisture based on available EC and direct measurements of moisture, interpolating between measurement locations using a Tikhonov regularization approach.  相似文献   

20.
Saturation‐excess runoff is the major runoff mechanism in humid well‐vegetated areas where infiltration rates often exceed rainfall intensity. Although the Soil and Water Assessment Tool (SWAT) is one of the most widely used models, it predicts runoff based mainly on soil and land use characteristics, and is implicitly an infiltration‐excess runoff type of model. Previous attempts to incorporate the saturation‐excess runoff mechanism in SWAT fell short due to the inability to distribute water from one hydrological response unit to another. This paper introduces a modified version of SWAT, referred to as SWAT‐Hillslope (SWAT‐HS). This modification improves the simulation of saturation‐excess runoff by redefining hydrological response units based on wetness classes and by introducing a surface aquifer with the ability to route interflow from “drier” to “wetter” wetness classes. Mathematically, the surface aquifer is a nonlinear reservoir that generates rapid subsurface stormflow as the water table in the surface aquifer rises. The SWAT‐HS model was tested in the Town Brook watershed in the upper reaches of the West Branch Delaware River in the Catskill region of New York, USA. SWAT‐HS predicted discharge well with a Nash‐Sutcliffe Efficiency of 0.68 and 0.87 for daily and monthly time steps. Compared to the original SWAT model, SWAT‐HS predicted less surface runoff and groundwater flow and more lateral flow. The saturated areas predicted by SWAT‐HS were concentrated in locations with a high topographic index and were in agreement with field observations. With the incorporation of topographic characteristics and the addition of the surface aquifer, SWAT‐HS improved streamflow simulation and gave a good representation of saturated areas on the dates that measurements were available. SWAT‐HS is expected to improve water quality model predictions where the location of the surface runoff matters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号