首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   817篇
  免费   62篇
  国内免费   11篇
测绘学   14篇
大气科学   43篇
地球物理   198篇
地质学   300篇
海洋学   65篇
天文学   187篇
综合类   2篇
自然地理   81篇
  2021年   18篇
  2020年   7篇
  2019年   17篇
  2018年   21篇
  2017年   23篇
  2016年   20篇
  2015年   20篇
  2014年   22篇
  2013年   39篇
  2012年   21篇
  2011年   43篇
  2010年   31篇
  2009年   36篇
  2008年   36篇
  2007年   28篇
  2006年   34篇
  2005年   38篇
  2004年   24篇
  2003年   29篇
  2002年   14篇
  2001年   19篇
  2000年   12篇
  1999年   16篇
  1998年   18篇
  1997年   6篇
  1996年   8篇
  1995年   7篇
  1994年   9篇
  1993年   7篇
  1992年   13篇
  1991年   11篇
  1990年   9篇
  1989年   6篇
  1988年   7篇
  1987年   8篇
  1985年   10篇
  1984年   17篇
  1983年   21篇
  1982年   9篇
  1981年   15篇
  1980年   15篇
  1979年   16篇
  1978年   21篇
  1977年   22篇
  1976年   12篇
  1975年   8篇
  1974年   8篇
  1973年   11篇
  1971年   4篇
  1968年   6篇
排序方式: 共有890条查询结果,搜索用时 15 毫秒
1.
Lower Palaeogene extrusive igneous rocks of the Faroe Islands Basalt Group (FIBG) dominate the Faroese continental margin, with flood basalts created at the time of breakup and separation from East Greenland extending eastwards into the Faroe‐Shetland Basin. This volcanic succession was emplaced in connection with the opening of the NE Atlantic; however, consensus on the age and duration of volcanism remains lacking. On the Faroe Islands, the FIBG comprises four main basaltic formations (the pre‐breakup Lopra and Beinisvørð formations, and the syn‐breakup Malinstindur and Enni formations) locally separated by thin intrabasaltic sedimentary and/or volcaniclastic units. Offshore, the distribution of these formations remains ambiguous. We examine the stratigraphic framework of these rocks on the Faroese continental margin combining onshore (published) outcrop information with offshore seismic‐reflection and well data. Our results indicate that on seismic‐reflection profiles, the FIBG can be informally divided into lower and upper seismic‐stratigraphic packages separated by the strongly reflective A‐horizon. The Lower FIBG comprises the Lopra and Beinisvørð formations; the upper FIBG includes the Malinstindur and Enni formations. The strongly reflecting A‐horizon is a consequence of the contrast in properties of the overlying Malinstindur and underlying Beinisvørð formations. Onshore, the A‐horizon is an erosional surface, locally cutting down into the Beinisvørð Formation; offshore, we have correlated the A‐horizon with the Flett unconformity, a highly incised, subaerial unconformity, within the juxtaposed and interbedded sedimentary fill of the Faroe‐Shetland Basin. We refer to this key regional boundary as the A‐horizon/Flett unconformity. The formation of this unconformity represents the transition from the pre‐breakup to the syn‐breakup phase of ocean margin development in the Faroe–Shetland region. We examine the wider implications of this correlation considering existing stratigraphic models for the FIBG, discussing potential sources of uncertainty in the correlation of the lower Palaeogene succession across the Faroe–Shetland region, and implications for the age and duration of the volcanism.  相似文献   
2.
Impact crater populations help us to understand solar system dynamics, planetary surface histories, and surface modification processes. A single previous effort to standardize how crater data are displayed in graphs, tables, and archives was in a 1978 NASA report by the Crater Analysis Techniques Working Group, published in 1979 in Icarus. The report had a significant lasting effect, but later decades brought major advances in statistical and computer sciences while the crater field has remained fairly stagnant. In this new work, we revisit the fundamental techniques for displaying and analyzing crater population data and demonstrate better statistical methods that can be used. Specifically, we address (1) how crater size-frequency distributions (SFDs) are constructed, (2) how error bars are assigned to SFDs, and (3) how SFDs are fit to power-laws and other models. We show how the new methods yield results similar to those of previous techniques in that the SFDs have familiar shapes but better account for multiple sources of uncertainty. We also recommend graphic, display, and archiving methods that reflect computers’ capabilities and fulfill NASA's current requirements for Data Management Plans.  相似文献   
3.
The evolution of volcanic landscapes and their landslide potential are both dependent upon the weathering of layered volcanic rock sequences. We characterize critical zone structure using shallow seismic Vp and Vs profiles and vertical exposures of rock across a basaltic climosequence on Kohala peninsula, Hawai’i, and exploit the dramatic gradient in mean annual precipitation (MAP) across the peninsula as a proxy for weathering intensity. Seismic velocity increases rapidly with depth and the velocity–depth gradient is uniform across three sites with 500–600 mm/yr MAP, where the transition to unaltered bedrock occurs at a depth of 4 to 10 m. In contrast, velocity increases with depth less rapidly at wetter sites, but this gradient remains constant across increasing MAP from 1000 to 3000 mm/yr and the transition to unaltered bedrock is near the maximum depth of investigation (15–25 m). In detail, the profiles of seismic velocity and of weathering at wet sites are nowhere monotonic functions of depth. The uniform average velocity gradient and the greater depths of low velocities may be explained by the averaging of velocities over intercalated highly weathered sites with less weathered layers at sites where MAP > 1000 mm/yr. Hence, the main effect of climate is not the progressive deepening of a near‐surface altered layer, but rather the rapid weathering of high permeability zones within rock subjected to precipitation greater than ~1000 mm/yr. Although weathering suggests mechanical weakening, the nearly horizontal orientation of alternating weathered and unweathered horizons with respect to topography also plays a role in the slope stability of these heterogeneous rock masses. We speculate that where steep, rapidly evolving hillslopes exist, the sub‐horizontal orientation of weak/strong horizons allows such sites to remain nearly as strong as their less weathered counterparts at drier sites, as is exemplified by the 50°–60° slopes maintained in the amphitheater canyons on the northwest flank of the island. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
4.
Titanite can be found in rocks of wide compositional range, is reactive, growing or regrowing during metamorphic and hydrothermal events, and is generally amenable to U–Pb geochronology. Experimental evidence suggest that titanite has a closure temperature for Pb ranging from 550 to 650°C, and thus titanite dates are commonly interpreted as cooling ages. However, this view has been challenged in recent years by evidence from natural titanite which suggests the closure temperature may be significantly higher (up to 800°C). Here, we investigate titanite in an enclave of migmatitic gneiss included within a granite intrusion. The titanite crystals exhibit textural features characteristic of fluid‐mediated mass transfer processes on length scales of <100 µm. These textural features are associated with variation in both Pb concentrations and distinct U–Pb isotopic compositions. Zr‐in‐titanite thermometry indicates that modification of the titanite occurred at temperatures in excess of 840°C, in the presence of a high‐T silicate melt. The Pb concentration gradients preserved in these titanite crystals are used to determine the diffusivity of Pb in titanite under high‐T conditions. We estimate diffusivities ranging from 2 × 10?22 to 5 × 10?25 m2/s. These results are significantly lower than experimental data predict yet are consistent with other empirical data on natural titanites, suggesting that Pb diffusivity is similar to that of Sr. Thus our data challenge the wide‐held assumption that U–Pb titanite dates only reflect cooling ages.  相似文献   
5.
Predicting the future response of ice sheets to climate warming and rising global sea level is important but difficult. This is especially so when fast-flowing glaciers or ice streams, buffered by ice shelves, are grounded on beds below sea level. What happens when these ice shelves are removed? And how do the ice stream and the surrounding ice sheet respond to the abruptly altered boundary conditions? To address these questions and others we present new geological, geomorphological, geophysical and geochronological data from the ice-stream-dominated NW sector of the last British–Irish Ice Sheet (BIIS). The study area covers around 45 000 km2 of NW Scotland and the surrounding continental shelf. Alongside seabed geomorphological mapping and Quaternary sediment analysis, we use a suite of over 100 new absolute ages (including cosmogenic-nuclide exposure ages, optically stimulated luminescence ages and radiocarbon dates) collected from onshore and offshore, to build a sector-wide ice-sheet reconstruction combining all available evidence with Bayesian chronosequence modelling. Using this information we present a detailed assessment of ice-sheet advance/retreat history, and the glaciological connections between different areas of the NW BIIS sector, at different times during the last glacial cycle. The results show a highly dynamic, partly marine, partly terrestrial, ice-sheet sector undergoing large size variations in response to sub-millennial-scale climatic (Dansgaard–Oeschger) cycles over the last 45 000 years. Superimposed on these trends we identify internally driven instabilities, operating at higher frequency, conditioned by local topographic factors, tidewater dynamics and glaciological feedbacks during deglaciation. Specifically, our new evidence indicates extensive marine-terminating ice-sheet glaciation of the NW BIIS sector during Greenland Stadials 12 to 9 – prior to the main ‘Late Weichselian’ ice-sheet glaciation. After a period of restricted glaciation, in Greenland Interstadials 8 to 6, we find good evidence for rapid renewed ice-sheet build-up in NW Scotland, with the Minch ice-stream terminus reaching the continental shelf edge in Greenland Stadial 5, perhaps only briefly. Deglaciation of the NW sector took place in numerous stages. Several grounding-zone wedges and moraines on the mid- and inner continental shelf attest to significant stabilizations of the ice-sheet grounding line, or ice margin, during overall retreat in Greenland Stadials 3 and 2, and to the development of ice shelves. NW Lewis was the first substantial present-day land area to deglaciate, in the first half of Greenland Stadial 3 at a time of globally reduced sea-level c. 26 kabp , followed by Cape Wrath at c. 24 kabp. The topographic confinement of the Minch straits probably promoted ice-shelf development in early Greenland Stadial 2, providing the ice stream with additional support and buffering it somewhat from external drivers. However, c. 20–19 kabp , as the grounding-line migrated into shoreward deepening water, coinciding with a marked change in marine geology and bed strength, the ice stream became unstable. We find that, once underway, grounding-line retreat proceeded in an uninterrupted fashion with the rapid loss of fronting ice shelves – first in the west, then the east troughs – before eventual glacier stabilization at fjord mouths in NW Scotland by ~17 kabp. Around the same time, ~19–17 kabp , ice-sheet lobes readvanced into the East Minch – possibly a glaciological response to the marine-instability-triggered loss of adjacent ice stream (and/or ice shelf) support in the Minch trough. An independent ice cap on Lewis also experienced margin oscillations during mid-Greenland Stadial 2, with an ice-accumulation centre in West Lewis existing into the latter part of Heinrich Stadial 1. Final ice-sheet deglaciation of NW mainland Scotland was punctuated by at least one other coherent readvance at c. 15.5 kabp , before significant ice-mass losses thereafter. At the glacial termination, c. 14.5 kabp , glaciers fed outwash sediment to now-abandoned coastal deltas in NW mainland Scotland around the time of global Meltwater Pulse 1A. Overall, this work on the BIIS NW sector reconstructs a highly dynamic ice-sheet oscillating in extent and volume for much of the last 45 000 years. Periods of expansive ice-sheet glaciation dominated by ice-streaming were interspersed with periods of much more restricted ice-cap or tidewater/fjordic glaciation. Finally, this work indicates that the role of ice streams in ice-sheet evolution is complex but mechanistically important throughout the lifetime of an ice sheet – with ice streams contributing to the regulation of ice-sheet health but also to the acceleration of ice-sheet demise via marine ice-sheet instabilities.  相似文献   
6.
Here we reconstruct the last advance to maximum limits and retreat of the Irish Sea Glacier (ISG), the only land-terminating ice lobe of the western British Irish Ice Sheet. A series of reverse bedrock slopes rendered proglacial lakes endemic, forming time-transgressive moraine- and bedrock-dammed basins that evolved with ice marginal retreat. Combining, for the first time on glacial sediments, optically stimulated luminescence (OSL) bleaching profiles for cobbles with single grain and small aliquot OSL measurements on sands, has produced a coherent chronology from these heterogeneously bleached samples. This chronology constrains what is globally an early build-up of ice during late Marine Isotope Stage 3 and Greenland Stadial (GS) 5, with ice margins reaching south Lancashire by 30 ± 1.2 ka, followed by a 120-km advance at 28.3 ± 1.4 ka reaching its 26.5 ± 1.1 ka maximum extent during GS-3. Early retreat during GS-3 reflects piracy of ice sources shared with the Irish-Sea Ice Stream (ISIS), starving the ISG. With ISG retreat, an opportunistic readvance of Welsh ice during GS-2 rode over the ISG moraines occupying the space vacated, with ice margins oscillating within a substantial glacial over-deepening. Our geomorphological chronosequence shows a glacial system forced by climate but mediated by piracy of ice sources shared with the ISIS, changing flow regimes and fronting environments.  相似文献   
7.
8.
Eclogites within exhumed continental collision zones indicate regional burial to depths of at least 60 km, and often more than 100 km in the coesite‐stable, ultra‐high pressure (UHP) eclogite facies. Garnet, omphacitic pyroxene, high‐Si mica, kyanite ± coesite should grow at the expense of low‐P minerals in most felsic compositions, if equilibrium obtained at these conditions. The quartzofeldspathic rocks that comprise the bulk of eclogite facies terranes, however, contain mainly amphibolite facies, plagioclase‐bearing assemblages. To what extent these lower‐P minerals persisted metastably during (U)HP metamorphism, or whether they grew afterwards, reflects closely upon crustal parameters such as density, strength and seismic character. The Nordfjord area in western Norway offers a detailed view into a large crustal section that was subducted into the eclogite facies. The degree of transformation in typical pelite, paragneiss, granitic and granodioritic gneiss was assessed by modelling the equilibrium assemblage, comparing it with existing parageneses in these rocks and using U/Th–Pb zircon geochronology from laser ablation ICPMS to establish the history of mineral growth. U–Pb dates define a period of zircon recrystallization and new growth accompanying burial and metamorphism lasting from 430 to 400 Ma. Eclogite facies mafic rock (~2 vol.% of crust) is the most transformed composition and records the ambient peak conditions. Rare garnet‐bearing pelitic rocks (<10 vol.% of crust) preserve a mostly prograde mineral evolution to near‐peak conditions; REE concentrations in zircon indicate that garnet was present after 425 Ma and feldspar broke down after 410 Ma. Felsic gneiss – by far the most abundant rock type – is dominated by quartz + biotite + feldspar, but minor zoisite/epidote, phengitic white mica, garnet and rutile point to a prograde HP overprint. Relict textures indicate that much of the microstructural framework of plagioclase, K‐feldspar, and perhaps biotite, persisted through at least 25 Ma of burial, and ultimately UHP metamorphism. The signature reaction of the eclogite facies in felsic rocks – jadeite/omphacite growth from plagioclase – cannot be deduced from the presence of pyroxene or its breakdown products. We conclude that prograde dehydration in orthogneiss leads to fluid absent conditions, impeding equilibration beyond ~high‐P amphibolite facies.  相似文献   
9.
High Mg–Al granulites from the Sunki locality in the central portion of the Eastern Ghats Province record evidence for the high-temperature peak and retrograde evolution. Peak metamorphic phase assemblages from two samples are garnet + orthopyroxene + quartz + ilmenite + melt and orthopyroxene + spinel + sillimanite + melt, respectively. Isochemical phase diagrams (pseudosections) based on bulk rock compositions calculated in the chemical system Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3 (NCKFMASHTO) and Al contents in orthopyroxene indicate peak UHT metamorphic conditions in excess of 960 °C and 9.7 kbar. Microstructures and the presence of cordierite interpreted to record the post-peak evolution show that the rocks underwent decompression and minor cooling from conditions of peak UHT metamorphism to conditions of ~ 900 °C at ~ 7.5 kbar. In situ U–Pb isotope analyses of monazite associated with garnet and cordierite using the Sensitive High Resolution Ion Microprobe (SHRIMP) yield a weighted mean 207Pb/235U age of ca. 980 Ma, which is interpreted to broadly constrain the timing of high-temperature monazite growth during decompression and melt crystallization at ~ 900–890 °C and 7.5 kbar. However, the range of 207Pb/235U monazite ages (from ca. 1014 Ma to 959 Ma for one sample and ca. 1043 Ma to 922 Ma for the second sample) suggest protracted monazite growth during the high-temperature retrograde evolution, and possibly diffusive lead loss during slow cooling after decompression. The results of the integrated petrologic and geochronologic approach presented here are inconsistent with a long time gap between peak conditions and the formation of cordierite-bearing assemblages at lower pressure, as proposed in previous studies, but are consistent with a simple evolution of a UHT peak followed by decompression and cooling.  相似文献   
10.
http://www.sciencedirect.com/science/article/pii/S1674987114001601   总被引:3,自引:2,他引:1  
Data from a migmatised metapelite raft enclosed within charnockite provide quantitative constraints on the pressure-temperature-time[P-T-t) evolution of the Nagercoil Block at the southernmost tip of peninsular India.An inferred peak metamorphic assemblage of garnet,K-feldspar.sillimanite,plagioclase,magnetite,ilmenite,spinel and melt is consistent with peak metamorphic pressures of 6-8 kbar and temperatures in excess of 900℃.Subsequent growth of cordierite and biotite record high-temperature retrograde decompression to around 5 kbar and 800 C.SHRIMP U-Pb dating of magmatic zircon cores suggests that the sedimentary protoliths were in part derived from felsic igneous rocks with Palaeoproterozoic crystallisation ages.New growth of metamorphic zircon on the rims of detrital grains constrains the onset of melt crystallisation,and the minimum age of the metamorphic peak,to around560 Ma.The data suggest two stages of monazite growth.The first generation of REE-enriched monazite grew during partial melting along the prograde path at around 570 Ma via the incongruent breakdown of apatite.Relatively REE-depleted rims,which have a pronounced negative europium anomaly,grew during melt crystallisation along the retrograde path at around 535 Ma.Our data show the rocks remained at suprasolidus temperatures for at least 35 million years and probably much longer,supporting a long-lived high-grade metamorphic history.The metamorphic conditions,timing and duration of the implied clockwise P-T-t path are similar to that previously established for other regions in peninsular India during the Ediacaran to Cambrian assembly of that part of the Gondwanan supercontinent.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号