首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   399篇
  免费   14篇
  国内免费   6篇
测绘学   13篇
大气科学   66篇
地球物理   74篇
地质学   195篇
海洋学   14篇
天文学   45篇
综合类   2篇
自然地理   10篇
  2024年   2篇
  2021年   5篇
  2020年   6篇
  2019年   6篇
  2018年   9篇
  2017年   12篇
  2016年   15篇
  2015年   11篇
  2014年   11篇
  2013年   36篇
  2012年   15篇
  2011年   30篇
  2010年   28篇
  2009年   21篇
  2008年   24篇
  2007年   19篇
  2006年   16篇
  2005年   7篇
  2004年   15篇
  2003年   20篇
  2002年   14篇
  2001年   12篇
  2000年   6篇
  1999年   5篇
  1998年   6篇
  1997年   4篇
  1996年   4篇
  1994年   8篇
  1991年   3篇
  1987年   2篇
  1984年   7篇
  1983年   2篇
  1982年   2篇
  1981年   3篇
  1980年   2篇
  1979年   5篇
  1978年   4篇
  1976年   3篇
  1973年   1篇
  1972年   1篇
  1970年   1篇
  1968年   1篇
  1967年   1篇
  1965年   1篇
  1964年   1篇
  1937年   1篇
  1931年   1篇
  1930年   1篇
  1914年   1篇
  1912年   1篇
排序方式: 共有419条查询结果,搜索用时 31 毫秒
11.
High spatial resolution U–Pb dates of zircons from two consanguineous ignimbrites of contrasting composition, the high-silica rhyolitic Toconao and the overlying dacitic Atana ignimbrites, erupted from La Pacana caldera, north Chile, are presented in this study. Zircons from Atana and Toconao pumice clasts yield apparent 238U/206Pb ages of 4.11±0.20 Ma and 4.65±0.13 Ma (2σ), respectively. These data combined with previously published geochemical and stratigraphic data, reveal that the two ignimbrites were erupted from a stratified magma chamber. The Atana zircon U–Pb ages closely agree with the eruption age of Atana previously determined by K–Ar dating (4.0±0.1 Ma) and do not support long (>1 Ma) residence times. Xenocrystic zircons were found only in the Toconao bulk ignimbrite, which were probably entrained during eruption and transport. Apparent 238U/206Pb zircon ages of 13 Ma in these xenocrysts provide the first evidence that the onset of felsic magmatism within the Altiplano–Puna ignimbrite province occurred approximately 3 Myr earlier than previously documented.  相似文献   
12.
In this study a field‐sampling technique for dissolved hydrogen (H2) in groundwater will be presented which allows the transport of gaseous samples into the laboratory for further analysis. The method consists of transferring the headspace trapped in a gas‐sampling bulb which is continuously purged by groundwater into previously evacuated vials using a gas‐tight syringe. Three transfer steps with preceding evacuation of the vial led to a H2‐recovery of 100 % in laboratory experiments. The method has been applied to determine H2 concentrations in an aquifer contaminated with chlorinated solvents. Tests concerning the effect of different pumping techniques on H2 concentrations revealed that most reliable values were obtained with a bladder pump, while an electrically driven submersible pump generated considerable amounts of hydrogen due to electrochemical interactions with the sampled water. Concentrations of dissolved hydrogen in field and laboratory samples were about two orders of magnitude higher when sampling was performed with the electrically driven submersible pump compared to sampling with the bladder pump and a peristaltic pump. Lab experiments with a Plexiglas reservoir to produce H2‐enriched water were used to study the effect of two tubing materials (PVC, polyamide) on H2 losses. PVC tubing turned out to allow transfer of H2‐enriched water over 25 m without significant losses, while PA‐tubing was not suitable for sampling of H2.  相似文献   
13.
Combined U-Pb zircon and 40Ar/39Ar sanidine data from volcanic rocks within or adjacent to the Geysers geothermal reservoir constrain the timing of episodic eruption events and the pre-eruptive magma history. Zircon U-Pb concordia intercept model ages (corrected for initial 230Th disequilibrium) decrease as predicted from stratigraphic and regional geological relationships (1σ analytical error): 2.47 ± 0.04 Ma (rhyolite of Pine Mountain), 1.38 ± 0.01 Ma (rhyolite of Alder Creek), 1.33 ± 0.04 Ma (rhyodacite of Cobb Mountain), 1.27 ± 0.03 Ma (dacite of Cobb Valley), and 0.94 ± 0.01 Ma (dacite of Tyler Valley). A significant (∼0.2-0.3 Ma) difference between these ages and sanidine 40Ar/39Ar ages measured for the same samples demonstrates that zircon crystallized well before eruption. Zircons U-Pb ages from the underlying main-phase Geysers Plutonic Complex (GPC) are indistinguishable from those of the Cobb Mountain volcanics. While this is in line with compositional evidence that the GPC fed the Cobb Mountain eruptions, the volcanic units conspicuously lack older (∼1.8 Ma) zircons from the shallowest part of the GPC. Discontinuous zircon age populations and compositional relationships in the volcanic and plutonic samples are incompatible with zircon residing in a single long-lived upper crustal magma chamber. Instead we favor a model in which zircons were recycled by remelting of just-solidified rocks during episodic injection of more mafic magmas. This is consistent with thermochronologic evidence that the GPC cooled below 350° C at the time the Cobb Mountain volcanics were erupted.  相似文献   
14.
The analysis of various factors influencing mineral availability documents future short-and long-term mineral-commodity supply trends. The lifetime of reserves, the development of the relative importance of production centres and the forecasting of the depletion of a resource base are mainly geological factors, although the category “reserves”, in contrast to “resources”, is determined by technical and economical aspects. These three factors govern the short-and long-term supply of mineral commodities. The intensity-of-use factors and the growth rate of consumption are variables related to the demand of mineral commodities. They influence the decision of companies for certain commodities as targets for exploration and investment in production centres. Both factors control the short-to medium-term mineral supply. Finally, the lead time to production is a technical variable, although influenced by ore deposit type, and controls short-term mineral availability.  相似文献   
15.
16.
Changes in the stress field of an aquifer system induced by seismotectonic activity may change the mixing ratio of groundwaters with different compositions in a well, leading to hydrochemical signals which in principle could be related to discrete earthquake events. Due to the complexity of the interactions and the multitude of involved factors the identification of such relationships is a difficult task. In this study we present an empiric statistical approach suitable to analyse if there is an interdependency between changes in the chemical composition of monitoring wells and the regional seismotectonic activity of a considered area. To allow a rigorous comparison with hydrochemistry the regional earthquake time series was aggregated into an univariate time series. This was realized by expressing each earthquake in form of a parameter “e”, taking into consideration both energetic (magnitude of a seismic event) and spatial parameters (position of epi/hypocentrum relative to the monitoring site). The earthquake and the hydrochemical time-series were synchronised aggregating the e-parameters into “earthquake activity” functions E, which takes into account the time of sampling relative to the earthquakes which occurred in the considered area. For the definition of the aggregation functions a variety of different “e” parameters were considered. The set of earthquake functions E was grouped by means of factor analysis to select a limited number of significant and representative earthquake functions E to be used further on in the relation analysis with the multivariate hydrochemical data set. From the hydrochemical data a restricted number of hydrochemical factors were extracted. Factor scores allow to represent and analyse the variation of the hydrochemical factors as a function of time. Finally, regression analysis was used to detect those hydrochemical factors which significantly correlate with the aggregated earthquake functions.This methodological approach was tested with a hydrochemical data set collected from a deep well monitored for two years in the seismically active Vrancea region, Romania. Three of the hydrochemical factors were found to correlate significantly with the considered earthquake activities. A screening with different time combinations revealed that correlations are strongest when the cumulative seismicity over several weeks was considered. The case study also showed that the character of the interdependency depends sometimes on the geometrical distribution of the earthquake foci. By using aggregated earthquake information it was possible to detect interrelationships which couldn't have been identified by analysing only relations between single geochemical signals and single earthquake events. Further on, the approach allows to determine the influence of different seismotectonic patterns on the hydrochemical composition of the sampled well. The method is suitable to be used as a decision instrument in assessing if a monitoring site is suitable or not to be included in a monitoring net within a complex earthquake prediction strategy.  相似文献   
17.
Axel Mü  ller  Karel Breiter  Reimar Seltmann  Zolt  n P  cskay 《Lithos》2005,80(1-4):201-227
Zoned quartz and feldspar phenocrysts of the Upper Carboniferous eastern Erzgebirge volcano-plutonic complex were studied by cathodoluminescence and minor and trace element profiling. The results verify the suitability of quartz and feldspar phenocrysts as recorders of differentiation trends, magma mixing and recharge events, and suggest that much heterogeneity in plutonic systems may be overlooked on a whole-rock scale. Multiple resorption surfaces and zones, element concentration steps in zoned quartz (Ti) and feldspar phenocrysts (anorthite content, Ba, Sr), and plagioclase-mantled K-feldspars etc. indicate mixing of silicic magma with a more mafic magma for several magmatic phases of the eastern Erzgebirge volcano-plutonic complex. Generally, feldspar appears to be sensitive to the physicochemical changes of the melt, whereas quartz phenocrysts are more stable and can survive a longer period of evolution and final effusion of silicic magmas. The regional distribution of mixing-compatible textures suggests that magma mingling and mixing was a major process in the evolution of these late-Variscan granites and associated volcanic rocks.

Quartz phenocrysts from 14 magmatic phases of the eastern Erzgebirge volcano-plutonic complex provide information on the relative timing of different mixing processes, storage and recharge, allowing a model for the distribution of magma reservoirs in space and time. At least two levels of magma storage are envisioned: deep reservoirs between 24 and 17 km (the crystallisation level of quartz phenocrysts) and subvolcanic reservoirs between 13 and 6 km. Deflation of the shallow reservoirs during the extrusion of the Teplice rhyolites triggered the formation of the Altenberg-Teplice caldera above the eastern Erzgebirge volcano-plutonic complex. The deep magma reservoir of the Teplice rhyolite also has a genetic relationship to the younger mineralised A-type granites, as indicated by quartz phenocryst populations. The pre-caldera biotite granites and the rhyodacitic Schönfeld volcanic rocks represent temporally and spatially separate magma sources. However, the deep magma reservoir of both is assumed to have been at a depth of 24–17 km. The drastic chemical contrast between the pre-caldera Schönfeld (Westfalian B–C) and the syn-caldera Teplice (Westfalian C–D) volcanic rocks is related to the change from late-orogenic geotectonic environment to post-orogenic faulting, and is considered an important chronostratigraphic marker.  相似文献   

18.
The exact number, extent and chronology of the Middle Pleistocene Elsterian and Saalian glaciations in northern Central Europe are still controversial. This study presents new luminescence data from Middle Pleistocene ice‐marginal deposits in northern Germany, giving evidence for repeated glaciations during the Middle Pleistocene (MIS 12 to MIS 6). The study area is located in the Leine valley south of the North German Lowlands. The data set includes digital elevation models, high‐resolution shear wave seismic profiles, outcrop and borehole data integrated into a 3D subsurface model to reconstruct the bedrock relief surface. For numerical age determination, we performed luminescence dating on 12 ice‐marginal and two fluvial samples. Luminescence ages of ice‐marginal deposits point to at least two ice advances during MIS 12 and MIS 10 with ages ranging from 461±34 to 421±25 ka and from 376±27 to 337±21 ka. The bedrock relief model and different generations of striations indicate that the older ice advance came from the north and the younger one from the northeast. During rapid ice‐margin retreat, subglacial overdeepenings were filled with glaciolacustrine deposits, partly rich in re‐worked Tertiary lignite and amber. During MIS 8 and MIS 6, the study area may have been affected by two ice advances. Luminescence ages of glaciolacustrine delta deposits point to a deposition during MIS 8 or early MIS 6, and late MIS 6 (250±20 to 161±10 ka). The maximum extent of both the Elsterian (MIS 12 and MIS 10) and Saalian glaciations (MIS 8? and MIS 6) approximately reached the same position in the Leine valley and was probably controlled by the formation of deep proglacial lakes in front of the ice sheets, preventing a further southward advance.  相似文献   
19.
We compared median runoff (R) and precipitation (P) relationships over 25 years from 20 mesoscale (50 to 5,000 km2) catchments on the Boreal Plains, Alberta, Canada, to understand controls on water sink and source dynamics in water‐limited, low‐relief northern environments. Long‐term catchment R and runoff efficiency (RP?1) were low and varied spatially by over an order of magnitude (3 to 119 mm/year, 1 to 27%). Intercatchment differences were not associated with small variations in climate. The partitioning of P into evapotranspiration (ET) and R instead reflected the interplay between underlying glacial deposit texture, overlying soil‐vegetation land cover, and regional slope. Correlation and principal component analyses results show that peatland‐swamp wetlands were the major source areas of water. The lowest estimates of median annual catchment ET (321 to 395 mm) and greatest R (60 to 119 mm, 13 to 27% of P) were observed in low‐relief, peatland‐swamp dominated catchments, within both fine‐textured clay‐plain and coarse‐textured glacial deposits. In contrast, open‐water wetlands and deciduous‐mixedwood forest land covers acted as water sinks, and less catchment R was observed with increases in proportional coverage of these land covers. In catchments dominated by hummocky moraines, long‐term runoff was restricted to 10 mm/year, or 2% of P. This reflects the poor surface‐drainage networks and slightly greater regional slope of the fine‐textured glacial deposit, coupled with the large soil‐water and depression storage and higher actual ET of associated shallow open‐water marsh wetland and deciduous‐forest land covers. This intercatchment study enhances current conceptual frameworks for predicting water yield in the Boreal Plains based on the sink and source functions of glacial landforms and soil‐vegetation land covers. It offers the capability within this hydro‐geoclimatic region to design reclaimed catchments with desired hydrological functionality and associated tolerances to climate or land‐use changes and inform land management decisions based on effective catchment‐scale conceptual understanding.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号