首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   2篇
  国内免费   3篇
大气科学   1篇
地球物理   1篇
地质学   28篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2015年   1篇
  2013年   2篇
  2012年   1篇
  2011年   2篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   4篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1989年   1篇
排序方式: 共有30条查询结果,搜索用时 234 毫秒
1.
The Koshrabad massif, referred to as the Hercynian postcollisional intrusions of the Tien Shan, is composed of two rock series: (1) mafic and quartz monzonites and (2) granites of the main phase. Porphyritic granitoids of the main phase contain ovoids of alkali feldspar, often rimmed with plagioclase. Mafic rocks developed locally in the massif core resulted from the injections of mafic magma into the still unconsolidated rocks of the main phase, which produced hybrid rocks and various dike series. All rocks of the massif are characterized by high f (Fe/(Fe + Mg)) values and contain fayalite, which points to the reducing conditions of their formation. Mafic rocks are the product of fractional crystallization of alkali-basaltic mantle melt, and granitoids of the main phase show signs of crustal-substance contamination. In high f values and HFSE contents the massif rocks are similar to A-type granites. Data on the geochemical evolution of the massif rocks confirm the genetic relationship of the massif gold deposits with magmatic processes and suggest the accumulation of gold in residual acid melts and the rapid formation of ore quartz veins in the same structures that controlled the intrusion of late dikes. The simultaneous intrusion of compositionally different postcollisional granitoids of the North Nuratau Ridge, including the Koshrabad granitoids, is due to the synchronous melting of different crustal protoliths in the zone of transcrustal shear, which was caused by the ascent of the hot asthenospheric matter in the dilatation setting. The resulting circulation of fluids led to the mobilization of ore elements from the crustal rocks and their accumulation in commercial concentrations.  相似文献   
2.
Axel Mü  ller  Karel Breiter  Reimar Seltmann  Zolt  n P  cskay 《Lithos》2005,80(1-4):201-227
Zoned quartz and feldspar phenocrysts of the Upper Carboniferous eastern Erzgebirge volcano-plutonic complex were studied by cathodoluminescence and minor and trace element profiling. The results verify the suitability of quartz and feldspar phenocrysts as recorders of differentiation trends, magma mixing and recharge events, and suggest that much heterogeneity in plutonic systems may be overlooked on a whole-rock scale. Multiple resorption surfaces and zones, element concentration steps in zoned quartz (Ti) and feldspar phenocrysts (anorthite content, Ba, Sr), and plagioclase-mantled K-feldspars etc. indicate mixing of silicic magma with a more mafic magma for several magmatic phases of the eastern Erzgebirge volcano-plutonic complex. Generally, feldspar appears to be sensitive to the physicochemical changes of the melt, whereas quartz phenocrysts are more stable and can survive a longer period of evolution and final effusion of silicic magmas. The regional distribution of mixing-compatible textures suggests that magma mingling and mixing was a major process in the evolution of these late-Variscan granites and associated volcanic rocks.

Quartz phenocrysts from 14 magmatic phases of the eastern Erzgebirge volcano-plutonic complex provide information on the relative timing of different mixing processes, storage and recharge, allowing a model for the distribution of magma reservoirs in space and time. At least two levels of magma storage are envisioned: deep reservoirs between 24 and 17 km (the crystallisation level of quartz phenocrysts) and subvolcanic reservoirs between 13 and 6 km. Deflation of the shallow reservoirs during the extrusion of the Teplice rhyolites triggered the formation of the Altenberg-Teplice caldera above the eastern Erzgebirge volcano-plutonic complex. The deep magma reservoir of the Teplice rhyolite also has a genetic relationship to the younger mineralised A-type granites, as indicated by quartz phenocryst populations. The pre-caldera biotite granites and the rhyodacitic Schönfeld volcanic rocks represent temporally and spatially separate magma sources. However, the deep magma reservoir of both is assumed to have been at a depth of 24–17 km. The drastic chemical contrast between the pre-caldera Schönfeld (Westfalian B–C) and the syn-caldera Teplice (Westfalian C–D) volcanic rocks is related to the change from late-orogenic geotectonic environment to post-orogenic faulting, and is considered an important chronostratigraphic marker.  相似文献   

3.
The North Tianshan orogenic belt in Kyrgyzstan consists predominantly of Neoproterozoic to early Paleozoic assemblages and tectonically interlayered older Precambrian crystalline complexes and formed during early Paleozoic accretionary and collisional events. One of the oldest continental fragments of late Mesoproterozoic (Grenvillian) age occurs within the southern part of the Kyrgyz North Tianshan. Using SHRIMP zircon ages, we document two magmatic events at ~ 1.1 and ~ 1.3 Ga. The younger event is characterized by voluminous granitoid magmatism between 1150 and 1050 Ma and is associated with deformation and metamorphism. The older event is documented by ~ 1.3 Ga felsic volcanism of uncertain tectonic significance and may reflect a rifting episode. Geochemical signatures as well as Nd and Hf isotopes of the Mesoproterozoic granitoids indicate melting of still older continental crust with model ages of ca 1.2 to 2.4 Ga.The Mesoproterozoic assemblages are intruded by Paleozoic diorites and granitoids, and Nd and Hf isotopic systematics suggest that the diorites are derived from melts that are mixtures of the above Mesoproterozoic basement and mantle-derived material; their source is thus distinct from that of the Mesoproterozoic rocks. Emplacement of these plutons into the Precambrian rocks occurred between 461 and 441 Ma. This is much younger than previously assumed and indicates that small plutons and large batholiths in North Tianshan were emplaced virtually synchronously in the late Ordovician to early Silurian.The Mesoproterozoic rocks in the North Tianshan may be remnants of a once larger continental domain, whose fragments are preserved in adjacent blocks of the Central Asian Orogenic Belt. Comparison with broadly coeval terranes in the Kokchetav area of northern Kazakhstan, the Chinese Central Tianshan and the Tarim craton point to some similarities and suggests that these may represent fragments of a single Mesoproterozoic continent characterized by a major orogenic event at ~ 1.1 Ga, known as the Tarimian orogeny.  相似文献   
4.
Aiming to resolve contradictions in tectonic models and to establish a correlation between Chinese and Kyrgyz sectors of the South Tian Shan we carried out stratigraphic and structural studies in Chinese part of the belt along the Bayinbuluk—Kuqa transect. New data indicate that Chinese South Tian Shan is dominated by top-to-the-south structures, which were formed during the latest Carboniferous and Early Permian. Major allochthons of the Devonian carbonates, thrusted on the Gzhelian and Asselian turbidites, are revealed in the northern part of the belt. Imbricated thrust packages and recumbent folds in deeper marine Devonian and Carboniferous rocks are common in the South. Postkinematic granites yield U-Pb ages of 285–275 Ma, which indicate that thrust deformation ceased by the middle of the Early Permian. The same direction of motion and similar age of deformations in Kyrgyz and Chinese sectors of the South Tian Shan prove, that top-to-the-south structures were formed during the same structural episode, which corresponds to the main collisional stage within entire belt.  相似文献   
5.
Accessory zircon from the polyphase Raygorodok stock (Northern Kazakhstan) has been dated by local U–Pb analysis (SIMS and LA-ICP-MS). This Au-bearing intrusion has been dated to 442–447 Ma, suggesting its emplacement at the very end of the Ordovician and Early Silurian, allowing the stock’s correlation with the Stepnyak Complex of small intrusions. Thus, control of small intrusions of the Stepnyak type over gold mineralization has been corroborated permitting their use as a regional prospecting characteristic.  相似文献   
6.
7.
A model of the cooling history of tin-bearing granitic magma forming the Schellerhau granites (Eastern Erzgebirge, Germany) is shown on the basis of quartz textures. Similar grain size, similar grain habit and correlatable growth textures of phenocrysts in different granite varieties give proof of a common crystallization history before the melts of the Schellerhau granite varieties were intruded. Four nucleation events occurred during crystallization in different crustal levels between about 20 and 1 km depth. The parental melt of the Schellerhau granites is interpreted to have contained<2.5 wt% H2O originally. The water content of the melt during the subvolcanic intrusion stage amounted to more than 5 wt% and characterizes highly evolved residual melts that enable the formation of tin deposits. This study contributes to a better understanding of the development and behaviour of fractionated tin-bearing granitic melts, and links quartz cathodoluminescence (CL) with microanalytical studies. Received: 28 October 1998 / Accepted: 18 August 1999  相似文献   
8.
A novel fully-automated airborne gas chromatograph for in situmeasurements of long-lived stratospheric tracers hasbeen developed, combining the high selectivity of a megabore PLOTcapillary column with recently developed sampling and separationtechniques. The Gas cHromatograph for theObservation of Stratospheric Tracers (GHOST)has been successfully operated during three STREAM campaigns(Stratosphere TRoposphere Experiment byAirborne Measurement) onboard a Cessna Citation IIaircraft in two different modes: Either N2O andCF2Cl2(CFC-12) or CFC-12 and CFCl3 (CFC-11) have been measuredsimultaneously, with a time resolution of 2 min for both modes.Under flight conditions the instrument precision (1) forthese species is better than 0.9%, and the accuracy(1) is better than 2.0% of the tropospheric values ofall measured compounds. The detection limits (3) arebelow 28 ppb for N2O, 14 ppt for CFC-12, and 8 ppt forCFC-11, respectively, i.e., well below 10 % of the troposphericvalues of all measured compounds. Post-mission optimization of thechromatographic separation showed a possible enhancement of thetime resolution by up to a factor of 2, associated with acomparable increase in precision and detection limit. As test ofactual performance of GHOST results from an in-flight N2Ointercomparison with a tunable diode laser absorptionspectrometer (TDLAS) are presented. They yield an excellentagreement between both instruments. Furthermore, on the basis ofthe hitherto most extensive set of upper tropospheric and lowerstratospheric data, the relative stratospheric N22O lifetime isre-assessed. When referenced to the WMO reference CFC-11 lifetimeof 45 ± 7 years an N2O lifetime of 91 ± 15 yearsis derived, a value substantially smaller than the WMO referencelifetime of 120 years. Moreover, this value implies astratospheric N2O sink strength of 16.3 ± 2.7 Tg (N)yr–1 which is 30% larger than previous estimates.  相似文献   
9.
Mineral assemblages present within the Charmitan gold(-tungsten) quartz-vein mineralization have been investigated for their cathodoluminescence behaviour, chemical composition and noble gas isotope systematics. This inventory of methods allows for the first time a systematic reconstruction of the paragenetic relationships of quartz, scheelite, sulphides and native gold within the gold mineralization at Charmitan and provides the basis to utilise noble gas data in the discussion of sources and evolution of ore-forming fluids. The vein quartz is classified into four generations based on microscopic and cathodoluminescence investigations. Quartz I shows intense brittle deformation as associated scheelite I. Undeformed scheelite II overgrows scheelite I and has lower light rare earth element and higher intermediate rare earth element contents as well as higher strontium concentrations. Scheelite II is associated with the economic gold mineralization and formed during re-crystallisation and re-precipitation of material which was partly re-mobilised from early scheelite I during infiltration of gold-bearing fluids. Early stage native gold inclusions are often associated with stage 2 sulphides, scheelite II and bismuth tellurides and contain Ag (3.6–24.4 wt.%), Hg (≤1.0 wt.%) and Bi (≤0.2 wt.%). Later stage electrum grains occur in association with stage 3 sulphides and sulphosalts and contain Hg (<0.8 wt.%) and elevated Sb concentrations (up to 3.0 wt.%). Noble gas isotope data (3He/4He: 0.2-0.4 Ra) for hydrothermal ore fluids trapped in the gold-related sulphides and sulphosalts (stage 2 pyrite and arsenopyrite; stage 3 pyrite, sphalerite, galena and lead sulphosalts) suggest that diverse fluid sources were involved in the formation of the Charmitan gold deposit. These data are indicative of a small, but significant input of fluids from external, deep-seated (mantle and possibly lower crust) sources. A decrease in the input of mantle helium and an increasing role of crustal helium from early to later stages of the mineralization is suggested by the measured 3He/4He and 40Ar*/4He ratios. Sulphides from ore veins in meta-sedimentary rocks contain higher portions of meteoric fluids than those in intrusive rock types as indicated by their lower 3He/36Ar ratios. The 3He/36Ar ratios in the meta-sedimentary rocks agree well with ratios typical of gold mineralizations in the Tien Shan gold province completely hosted by meta-sedimentary sequences, indicating intense fluid-wall rock interaction.  相似文献   
10.
The early Paleozoic Terskey Suture zone,located in the southern part of the Northern Tien Shan domain in Kyrgyzstan,comprises tectonic slivers of dismembered ophiolites and associated primitive volcanics and deepmarine sediments.In the Lake Songkul area,early-middle Cambrian pillow basalts are crosscut by the Songkultau intrusion of coarse-grained gneissose quartz diorites and tonalites with geochemical characteristics typical for high-SiO2 adakites(SiO2>56 wt.%,Al2O3>15 wt.%,Na2 O>3.5 wt.%and high Sr/Y and La/Yb ratios).The Songkultau granitoids have positive initialεNd(+3.8 to+6.4)andεHf(+12.3 to+13.5)values indicating derivation from sources with MORB-like isotopic signature.Volcanic formations,surrounding the Songkultau intrusion,have geochemical affinities varying from ocean floor to island arc series.This rock assemblage is interpreted as a relic of an early-middle Cambrian primitive arc where the adakite-like granitoids were derived from partial melting of young and hot subducted oceanic crust.An age of 505 Ma,obtained for the Songkultau intrusion,shows that hot subduction under the Northern Tien Shan continued until middle Cambrian.The primitive arc complexes were obducted onto the Northern Tien Shan domain,where the Andean type continental magmatic arc developed in Cambrian and Ordovician.Formation of the Andean type arc was accompanied by uplift,erosion and deposition of coarse clastic sediments.A depositional age of ca.470 Ma,obtained for the gravellites in the Lake Songkul area,is in agreement with the timing of deposition for lower Ordovician conglomerates elsewhere in the Northern Tien Shan,and corresponds to the main phase of the Andean type magmatism.The Songkultau adakites in association with surrounding ocean floor and island arc formations constitute a relic of a primitive Cambrian arc and represent a juvenile domain of substantial size identified so far within the predominantly crustal-derived terranes of Tien Shan.On a regional scale this primitive arc can be compared with juvenile Cambrian arcs of Kazakhstan,Gorny Altai and Mongolia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号