首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   130篇
  免费   1篇
  国内免费   5篇
测绘学   2篇
大气科学   16篇
地球物理   26篇
地质学   37篇
海洋学   44篇
天文学   8篇
综合类   2篇
自然地理   1篇
  2021年   5篇
  2020年   4篇
  2019年   3篇
  2018年   3篇
  2017年   4篇
  2016年   7篇
  2015年   6篇
  2014年   3篇
  2013年   10篇
  2012年   13篇
  2011年   15篇
  2010年   13篇
  2009年   7篇
  2008年   5篇
  2007年   9篇
  2006年   8篇
  2005年   8篇
  2004年   3篇
  2003年   5篇
  2002年   3篇
  1999年   1篇
  1998年   1篇
排序方式: 共有136条查询结果,搜索用时 875 毫秒
101.
The first Geostationary Ocean Color Imager (GOCI) launched by South Korea in June 2010 constitutes a major breakthrough in marine optics remote-sensing for its capabilities to observe the diurnal cycles of the ocean. The light signal recorded at eight wavelengths by the sensor allows, after correction for Solar illumination and atmospheric effects, the retrieval of coloured biogeochemical products such as the chlorophyll, suspended sediment and coloured dissolved organic matter concentrations every hour between 9:00 am and 4:00 pm local time around the Korean peninsula. However operational exploitation of the mission needs beforehand a sound validation of first the radiometric calibration, i.e. inspection of the top-of-atmosphere reflectance, and second atmospheric corrections for retrieval of the water-leaving reflectance at sea surface. This study constitutes a contribution to the quality assessment of the GOCI radiometric products generated by the Korea Ocean Satellite Center (KOSC) through comparison with concurrent data from the MODerate-resolution Imaging Spectroradiometer (MODIS, NASA) and MEdium Resolution Imaging Spectrometer (MERIS, ESA) sensors as well as in situ measurements. These comparisons are made with spatially and temporally collocated data. We focus on Rayleigh-corrected reflectance (?? RC ) and normalized remote-sensing marine reflectance (nRrs). Although GOCI compares reasonably well with MERIS and MODIS, what demonstrates the success of Ocean Colour in geostationary orbit, we show that the current GOCI atmospheric correction systematically masks out data over very turbid waters and needs further examination and correction for future release of the GOCI products.  相似文献   
102.
This paper provides initial validation results for GOCI-derived water products using match-ups between the satellite and ship-borne in situ data for the period of 2010?C2011, with a focus on remote-sensing reflectance (R rs ). Match-up data were constructed through systematic quality control of both in situ and GOCI data, and a manual inspection of associated GOCI images to identify pixels contaminated by cloud, land and inter-slot radiometric discrepancy. Efforts were made to process and quality check the in situ R rs data. This selection process yielded 32 optimal match-ups for the R rs spectra, chlorophyll a concentration (Chl_a) and colored dissolved organic matter (CDOM), and with 20 match-ups for suspended particulate matter concentration (SPM). Most of the match-ups are located close to shore and thus the validation should be interpreted limiting to near-shore coastal waters. The R rs match-ups showed the mean relative errors of 18?C33% for the visible bands with the lowest 18?C19% for the 490 nm and 555 nm bands and 33% for the 412 nm band. Correlation for the R rs match-ups was high in the 490?C865 nm bands (R2=0.72?C0.84) and lower in the 412 nm band (R2=0.43) and 443 nm band (R2=0.66). The match-ups for Chl_a showed a low correlation (<0.41) although the mean absolute percentage error was 35% for the GOCI standard Chl_a. The CDOM match-ups showed an even worse comparison with R2<0.2. These match-up comparison for Chl_a and CDOM would imply the difficulty to estimate Chl_a and CDOM in near-shore waters where the variability in SPM would dominate the variability in R rs . Clearly, the match-up statistics for SPM was better with R2=0.73 and 0.87 for two evaluated algorithms, although GOCI-derived SPM overestimated low concentration and underestimated high concentration. Based on this initial match-up analysis, we made several recommendations -1) to collect more offshore under-water measurements of the R rs data, 2) to include quality flags in level-2 products, 3) to introduce an ISRD correction in the GOCI processing chain, 4) to investigate other types of in-water algorithms such as semianalytical ones, and 5) to investigate vicarious calibration for GOCI data and to maintain accurate and consistent calibration of field radiometric instruments.  相似文献   
103.
This paper describes an atmospheric correction algorithm for Geostationary Ocean Color Imager (GOCI) and its early phase evaluation. This algorithm was implemented in GOCI Data Processing System (GDPS) version 1.1. The algorithm is based on the standard SeaWiFS method, which accounts for multiple scattering effects and partially updated in terms of turbid case-2 water correction, optimized aerosol models, and solar angle correction per slot. For turbid water correction, we used a regional empirical relationship between water reflectance at the red (660 nm) and near infrared bands (745 nm and 865 nm). The relationship was derived from turbid pixels in satellite images after atmospheric correction, and processed using aerosol properties derived for neighboring non-turbid waters. For validation of the GOCI atmospheric correction, we compared our results with in situ measurements of normalized water leaving radiance (nL w ) spectra that were obtained during several cruises in 2011 around Korean peninsula. The match up showed an acceptable result with mean ratio of the GOCI to in situ nL w (??), 1.17, 1.24, 1.26, 1.15, 0.86 and 0.99 at 412 nm, 443 nm, 490 nm, 555 nm, 660 nm and 680 nm, respectively. It is speculated that part of the deviation arose from a lack of vicarious calibration and uncertainties in the above water nLw measurements.  相似文献   
104.
The Geostationary Ocean Color Imager (GOCI) instrument acquires eight channels of multispectral images, which consist of 16 slots positioned in four lines and columns. GOCI Level 1B data, therefore, consist of a mosaic of 16 images, geometrically corrected with the Image Navigation and Registration Software Module (INRSM) system based on automatic point landmark matching for each slot and band. A study of the geometric performance characteristics of the Level 1B data was conducted over a period from August 2010 to September 2011 using residual data from Bands 7 and 8. To evaluate the geometric performance in detail, this paper examines the following four types of image navigation and registration errors: navigation performance, within-frame registration, frame-to-frame registration, and band-toband registration. In addition to the performance statistics based on mosaic images, we used a slot-based analysis method for the rainy season (here, June 2011) to understand the local distribution of the geometric performance. From the image-based results, the navigation and frame-to-frame accuracies were better than 1 pixel and the band-to-band registration accuracy was better than 0.4 pixels, while the within-frame registration accuracy was less than 1 pixel. However, for the band-to-band performance, the percentage of observations that fell within the specifications was slightly less than 99.7% for all 240 frames from June 2011. The within-frame performance was much lower than the other performance categories and the residual error for the east-west direction was higher than that for the north-south direction. The results from the slotbased performance evaluation suggest that abnormal errors (e.g. above 53 ??rad for navigation) occur in some slots, although the performance during an estimation period of 7 continuous days was within the desired criteria.  相似文献   
105.
106.
In 2006, we started construction of an observation network of 12 stations in and around Shikoku and the Kii Peninsula to conduct research for forecasting Tonankai and Nankai earthquakes. The purpose of the network is to clarify the mechanism of past preseismic groundwater changes and crustal deformation related to Tonankai and Nankai earthquakes. Construction of the network of 12 stations was completed in January 2009. Work on two stations, Hongu-Mikoshi (HGM) and Ichiura (ICU), was finished earlier and they began observations in 2007. These two stations detected strain changes caused by the slow-slip events on the plate boundary in June 2008, although related changes in groundwater levels were not clearly recognized.  相似文献   
107.
The violent free-surface motions interacting with structures are investigated using the moving particle semi-implicit (MPS) method, which was originally proposed by Koshizuka and Oka (1996) for incompressible flow simulation. In the present numerical method, a more efficient algorithm for Lagrangian moving particles is used for solving various highly nonlinear free-surface problems without using the Eulerian approach or the grid system. Therefore, the convection terms and time derivatives in the Navier–Stokes equation can be calculated more directly without any numerical diffusion, instabilities, or topological failure. In particular, the MPS method is applied to the simulation of liquid-entry and slamming problems, such as wet-drop (liquid–liquid collision) tests in an LNG tank and slamming loads (solid–liquid collision) on rigid plates with various incident angles. The numerical results are in good agreement with available experimental data.  相似文献   
108.
The spatial scales of mesoscale eddies are of importance to understand physio-biogeochemical processes in the East/Japan Sea. Chlorophyll-a concentration images from the Geostationary Ocean Color Imager (GOCI) revealed numerous eddies during the phytoplankton bloom in spring. These eddies were manually digitized to obtain geolocation information at the peripheries from GOCI images and then least-square fitted to each ellipse. The elliptic elements were the geolocation position of the eddy center, the rotation angle from due east, the eccentricity, the lengths of the semi-major and semi-minor axes, and the mean radius of the ellipse. The spatial scales of eddies had a mean radii ranging from 10 km to 75 km and tended to be smaller in the northern region. The scales revealed a linear trend of about ?7.26 km/°N as a function of the latitude. This tendency depended on the latitudinal variation of the internal Rossby radius of deformation, which originates from the substantial difference in the density structure of the water column. The scales from the sea surface temperature image were larger by 1.30 times compared to those from ocean color image. This implies that physical processes along the periphery of the eddy affect the nutrient dynamics.  相似文献   
109.
Stream water-use is essential for both agricultural and hydrological management and yet not many studies have explored its non-stationarity and nonlinearity with meteorological variables. This study proposed a deep-learning based model to estimate agricultural water withdrawal using hydro-meteorological variables, which projected the changes of agricultural water withdrawal influenced by climate change of future. The relationships between meteorological variables and stream water-use rate (WUR) were quantified using a deep belief network (DBN). The influences of precipitation, potential evapotranspiration, and monthly averaged WUR on the performance of the developed DBN model were tested. As a result, this DBN with potential evapotranspiration (PET) provided better performances than precipitation to estimate the WUR. The PET of multi-model scenarios for Representative Concentration Pathways 8.5 would be increased as time goes by, and thus leads to increase WUR estimated by DBN in three basins, located in South Korea during the future period. On the contrary, water availability expected to decrease compared to the current. Therefore, managing water-uses and improving efficiencies can be prepared for the change in agricultural water-use by climate change in the future.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号