首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2408篇
  免费   115篇
  国内免费   9篇
测绘学   85篇
大气科学   200篇
地球物理   506篇
地质学   992篇
海洋学   168篇
天文学   396篇
综合类   12篇
自然地理   173篇
  2023年   12篇
  2022年   11篇
  2021年   32篇
  2020年   49篇
  2019年   51篇
  2018年   65篇
  2017年   84篇
  2016年   106篇
  2015年   68篇
  2014年   72篇
  2013年   147篇
  2012年   90篇
  2011年   123篇
  2010年   129篇
  2009年   141篇
  2008年   120篇
  2007年   114篇
  2006年   110篇
  2005年   105篇
  2004年   104篇
  2003年   75篇
  2002年   75篇
  2001年   40篇
  2000年   36篇
  1999年   46篇
  1998年   25篇
  1997年   26篇
  1996年   23篇
  1995年   12篇
  1994年   30篇
  1993年   23篇
  1992年   13篇
  1991年   11篇
  1990年   13篇
  1989年   10篇
  1987年   15篇
  1986年   11篇
  1985年   16篇
  1984年   15篇
  1983年   14篇
  1982年   23篇
  1981年   18篇
  1980年   28篇
  1979年   12篇
  1978年   12篇
  1977年   14篇
  1976年   15篇
  1974年   13篇
  1973年   12篇
  1971年   9篇
排序方式: 共有2532条查询结果,搜索用时 281 毫秒
61.
An eddy covariance (EC) station was deployed at Solfatara crater, Italy, June 8–25, 2001 to assess if EC could reliably monitor CO2 fluxes continuously at this site. Deployment at six different locations within the crater allowed areas of focused gas venting to be variably included in the measured flux. Turbulent (EC) fluxes calculated in 30-min averages varied between 950 and 4460 g CO2 m−2 d−1; the highest measurements were made downwind of degassing pools. Comparing turbulent fluxes with chamber measurements of surface fluxes using footprint models in diffuse degassing regions yielded an average difference of 0% (±4%), indicating that EC measurements are representative of surface fluxes at this volcanic site. Similar comparisons made downwind of degassing pools yielded emission rates from 12 to 27 t CO2 d−1 for these features. Reliable EC measurements (i.e. measurements with sufficient and stationary turbulence) were obtained primarily during daytime hours (08:00 and 20:00 local time) when the wind speed exceeded 2 m s−1. Daily average EC fluxes varied by ±50% and variations were likely correlated to changes in atmospheric pressure. Variations in CO2 emissions due to volcanic processes at depth would have to be on the same order of magnitude as the measured diurnal variability in order to be useful in predicting volcanic hazard. First-order models of magma emplacement suggest that emissions could exceed this rate for reasonable assumptions of magma movement. EC therefore provides a useful method of monitoring volcanic hazard at Solfatara. Further, EC can monitor significantly larger areas than can be monitored by previous methods.  相似文献   
62.
An integrated groundwater/surface water hydrological model with a 1 km2 grid has been constructed for Denmark covering 43,000 km2. The model is composed of a relatively simple root zone component for estimating the net precipitation, a comprehensive three-dimensional groundwater component for estimating recharge to and hydraulic heads in different geological layers, and a river component for streamflow routing and calculating stream–aquifer interaction. The model was constructed on the basis of the MIKE SHE code and by utilising comprehensive national databases on geology, soil, topography, river systems, climate and hydrology. The present paper describes the modelling process for the 7330 km2 island of Sjælland with emphasis on the problems experienced in combining the classical paradigms of groundwater modelling, such as inverse modelling of steady-state conditions, and catchment modelling, focussing on dynamic conditions and discharge simulation. Three model versions with different assumptions on input data and parameter values were required until the performance of the final, according to pre-defined accuracy criteria, model was evaluated as being satisfactory. The paper highlights the methodological issues related to establishment of performance criteria, parameterisation and assessment of parameter values from field data, calibration and validation test schemes. Most of the parameter values were assessed directly from field data, while about 10 ‘free’ parameters were subject to calibration using a combination of inverse steady-state groundwater modelling and manual trial-and-error dynamic groundwater/surface water modelling. Emphasising the importance of tests against independent data, the validation schemes included combinations of split-sample tests (another period) and proxy-basin tests (another area).  相似文献   
63.
Direct-current (DC) resistivity tomography has been applied to different mountain permafrost regions. Despite problems with the very high resistivities of the frozen material, plausible results were obtained. Inversions with synthetic data revealed that an appropriate choice of regularization constraints was important, and that a joint analysis of several tomograms computed with different constraints was required to judge the reliability of individual features. The theoretical results were verified with three field experiments conducted in the Swiss and the Italian Alps. At the first site, near Zermatt, Switzerland, the location and the approximate lateral and vertical extent of an ice core within a moraine could be delineated. On the Murtel rock glacier, eastern Swiss Alps, a steeply dipping boundary at its frontal part was observed, and extremely high resistivities of several MΩ indicated a high ice content. The base of the rock glacier remained unresolved by the DC resistivity measurements, but it could be constrained with transient EM soundings. On another rock glacier near the Stelvio Pass, eastern Italian Alps, DC resistivity tomography allowed delineation of the rock glacier base, and the only moderately high resistivities within the rock glacier body indicated that the ice content must be lower compared with the Murtel rock glacier.  相似文献   
64.
For Central Greenland, water isotope analysis indicates a temperature difference of about 10°C since the Last Glacial Maximum (LGM). However, borehole thermometry and gas diffusion thermometry indicate that LGM surface temperatures were about 20°C colder than today. Two general circulation model studies have shown that changes in the seasonal precipitation timing in Central Greenland might have caused a warm bias in the LGM water isotope proxy temperatures, and that this bias could explain the difference in the estimated paleotemperatures. Here we present an analysis of a number of atmospheric general circulation model simulations mostly done within the framework of the Paleoclimate Modeling Intercomparison Project. The models suggest that the seasonal cycle of precipitation and surface mass balance over Central Greenland at the LGM might have been very different from today. This supports the idea that the accuracy of the water isotope thermometry at the LGM in Greenland might be compromised as a result of a modified surface mass balance seasonality. However, the models disagree on the amplitude and sign of the bias. For Central East Antarctica, a strong seasonality effect on the LGM isotopic signal is not simulated by any of the analyzed models. For the mid-Holocene (6 kyr BP) the models suggest relatively weak isotope paleothermometry biases linked to changes in the surface mass balance seasonality over both ice sheets.  相似文献   
65.
Dredged samples from the Geophysicist seamount volcano in the northeastern part of the Kurile Basin include volcanic and volcanoclastic rocks ranging from basalt to andesite. The rocks have geochemical features typical of high-K island-arc calc-alkaline volcanism. They are enriched in LILE and depleted in Zr, Ti, Nb, Ta and Y. The chondrite-normalized REE patterns are characterized by enrichment of LREE similar to those of island-arc lava from the submarine volcanoes of rear-arc zone of the Kurile Island Arc. The volcanic rocks have a wide range of 87Sr/86Sr ratios (0.70287-0.70652), varying 143Nd/144Nd and Pb isotopic ratios. Their trace-element compositions and Sr-Nd-Pb isotope signatures may be explained by a small addition of crustal continental component to mantle-derived magmas that suggest the existence of thinned continental basement under the eastern part of the Kurile Basin.  相似文献   
66.
67.
Mafic high-pressure granulite, eclogite and pyroxenite xenoliths have been collected from a Mesozoic volcaniclastic diatreme in Xinyang, near south margin of the Sino-Korean Craton (SKC). The high-pressure granulite xenoliths are mainly composed of fine-grained granoblasts of Grt+Cpx+Pl+Hbl±Kfs±Q±Ilm with relict porphyritic mineral assemblage of Grt+Cpx±Pl±Rt. PT estimation indicates that the granoblastic assemblage crystallized at 765–890 °C and 1.25–1.59 GPa, corresponding to crustal depths of ca. 41–52 km with a geotherm of 75–80 mW/m2. Calculated seismic velocities (Vp) of high-pressure granulites range from 7.04 to 7.56 km/s and densities (D) from 3.05 to 3.30 g/cm3. These high-pressure granulite xenoliths have different petrographic and geochemical features from the Archean mafic granulites. Elevated geotherm and petrographic evidence imply that the lithosphere of this craton was thermally disturbed in the Mesozoic prior to eruption of the host diatreme. These samples have sub-alkaline basaltic compositions, equivalent to olivine– and quartz–tholeiite. REE patterns are flat to variably LREE-enriched (LaN/YbN=0.98–9.47) without Eu anomaly (Eu/Eu*=0.95–1.11). They possess 48–127 ppm Ni and 2–20 ppm Nb with Nb/U and La/Nb ratios of 13–54 and 0.93–4.75, respectively, suggesting that these high-pressure granulites may be products of mantle-derived magma underplated and contaminated at the base of the lower crust. This study also implies that up to 10 km Mesozoic lowermost crust was delaminated prior to eruption of the Cenozoic basalts on the craton.  相似文献   
68.
The Permocarboniferous basins in Northeast Germany formed on the heterogeneous and eroded parts of the Variscan orogene and its deformed northern foreland. Transtensional tectonic movements and thermal re-equilibration lead to medium-scale crustal fragmentation, fast subsidence rates and regional emplacement of large amounts of mostly acidic volcanics. The later basin formation and differentiation was triggered by reversals of the large-scale stress field and reactivation of prominent zones of weakness like the Elbe Fault System and the Rhenohercynian/Saxothuringian boundary that separate different Variscan basement domains in the area. The geomechanical behaviour of the latter plays an important role for the geodynamic evolution of the medium to large-scale structural units, which we can observe today in three dimensions on structural maps, geophysical recordings and digital models. This study concentrates on an area that comprises the southern Northeast German Basin, the Saale Basin, the Flechtingen High, the Harz Mountains High and the Subhercynian Basin. The presented data include re-evaluations of special geological and structural maps, the most recent interpretation of the DEKORP BASIN 9601 seismic profile and observations of exposed rock sections in Northeast Germany. On the basis of different structural inventories and different basement properties, we distinguish two structural units to the south and one structural unit to the north of the Elbe Fault System. For each unit, we propose a geomechanical model of basin formation and basin inversion, and show that the Rhenohercynian Fold and Thrust Belt domain is deformed in a thin-skinned manner, while the Mid-German Crystalline Rise Domain, which is the western part of the Saxothuringian Zone, rather shows a thick-skinned deformation pattern. The geomechanical model for the unit north to the Elbe Fault System takes account to the fact that the base of the Zechstein beneath the present Northeast German basin shows hardly any evidence for brittle deformation, which indicates a relative stable basement. Our geomechanical model suggests that the Permocarboniferous deposits may have contributed to the structural stiffness by covering small to medium scale structures of the upper parts of the brittle basement. It is further suggested that the pre-Zechstein successions underneath the present Northeast German basin were possibly strengthening during the Cretaceous basin inversion, which resulted in stress transfer to the long-lived master faults, as indicated for example by the shape of the salt domes in the vicinity of the latter faults. Contrary to this, post-Zechstein successions deformed in a different and rather complex way that was strongly biased by intensive salt tectonic movements.  相似文献   
69.
The Quepos, Nicoya and Herradura oceanic igneous terranes in Costa Rica are conspicuous features of a Mid to Late Cretaceous regional magmatic event that encompasses similar terranes in Central America, Colombia, Ecuador and the Caribbean. The Quepos terrane (66?Ma), which consists of ol-cpx phyric, tholeiitic pillow lavas overlain by highly vesicular hyaloclastites, breccias and conglomerates, is interpreted as an uplifted seamount/ocean island complex. The Nicoya (~90?Ma) and Herradura terranes consist of fault-bounded sequences of sediments, tholeiitic volcanics (pillow lavas and massive sheet flows) and plutonic rocks. The volcanic rocks were emplaced at relatively high eruption rates in moderate to deep water, possibly forming part of an oceanic plateau. Major and trace element data from Nicoya/Herradura tholeiites indicate higher melting temperatures than inferred for normal mid-ocean-ridge basalts (MORB) and/or a different source composition. Sr–Nd–Pb isotopic ratios from all three terranes are distinct from MORB but resemble those from the Galápagos hotspot. The volcanological, petrological and geochemical data from Costa Rican volcanic terranes, combined with published age data, paleomagnetic results and plate tectonic reconstructions of this region, provide strong evidence for a Mid Cretaceous (~90Ma) age for the Galápagos hotspot, making it one of the oldest known, active hotspots on Earth. Our results also support an origin of the Caribbean Plate through melting of the head of the Galápagos starting plume.  相似文献   
70.
The Darwin Rise has been proposed so many times and in so many forms and places that the time has come to make a more comprehensive examination of the region. Lying on the NW Pacific Plate between the Geisha Guyots, the Mid-Pacific Mountains, the equator, and the trenches, the region is roughly bounded by magnetic anomaly M20 (147 Ma). It was subjected to a massive outpouring of lava about 105 to 120 Ma, which created the guyots and seamounts in that region. Guyots are excellent tools for studying events of long ago because they eroded in the same lowstand in the Cretaceous and guyot relief, therefore, is a surrogate for paleo-sealevel. The relief is derived by subtracting the break depth of the summit plateau of a guyot from the regional depth. Guyot relief would necessarily be less in the center than to the periphery if the feature formed on a pre-existing rise, as has been postulated. The existence of a paleo-Darwin Rise would give concentric contours for the region in question. Of the sixty guyots used in this study, thirty-seven of these guyots were surveyed using SASS multibeam in the Marcus-Wake seamount group. Twenty-three guyots were surveyed using random track single-beam sonar surveys. An entirely different scenario is shown. Data revealed a major fracture passing through the area coevally or after the guyots formed. Because the depths to the summit are not the same now, vertical tectonics occurred after subaerial erosion. This means the fracture formed during and after the erosion (roughly 105 Ma) and influenced the normal sequence of events in guyot formation. Depending on how one deciphers trends through the Hess Rise morass, SASS bathymetry shows a continuation of the Surveyor/Mendocino fracture zone swarm inside the M20 region to the NE of these data. The fracture swarm continues to the western Pacific trench system. Based on this information, if the Darwin Rise ever existed, it had to have done so elsewhere.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号