首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   169篇
  免费   12篇
测绘学   1篇
大气科学   28篇
地球物理   55篇
地质学   55篇
海洋学   9篇
天文学   30篇
综合类   1篇
自然地理   2篇
  2023年   1篇
  2022年   3篇
  2021年   7篇
  2020年   4篇
  2019年   2篇
  2018年   7篇
  2017年   7篇
  2016年   9篇
  2015年   10篇
  2014年   12篇
  2013年   11篇
  2012年   8篇
  2011年   9篇
  2010年   16篇
  2009年   13篇
  2008年   10篇
  2007年   8篇
  2006年   14篇
  2005年   5篇
  2004年   7篇
  2003年   6篇
  2002年   2篇
  2001年   2篇
  2000年   2篇
  1999年   2篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1990年   1篇
排序方式: 共有181条查询结果,搜索用时 15 毫秒
101.
We investigate European summer (July–August) precipitation variability and its global teleconnections using the NCEP/NCAR reanalysis data (1950–2010) and a historical Coupled Model Intercomparison Project climate simulation (1901–2005) carried out using the ECHAM6/MPIOM climate model. A wavelike pattern is found in the upper tropospheric levels (200 hPa) similar to the summer circumglobal wave train (CGT) extending from the North Pacific to the Eurasian region. The positive phase of the CGT is associated with upper level anomalous low (high) pressure over western (eastern) Europe. It is further associated with a dipole-like precipitation pattern over Europe entailing significantly enhanced (reduced) precipitation over the western (eastern) region. The anomalous circulation features and associated summer precipitation pattern over Europe inverts for the negative CGT phase. Accordingly, the global teleconnection pattern of a precipitation index summarizing summer precipitation over Western Europe entails an upper level signature which consists of a CGT-like wave pattern extending from the North Pacific to Eurasia. The imprint of the CGT on European summer precipitation is distinct from that of the summer North Atlantic Oscillation, despite the two modes of variability bear strong similarities in their upper level atmospheric pattern over Western Europe. The analysis of simulated CGT features and of its climatic implications for the European region substantiates the existence of the CGT-European summer precipitation connection. The summer CGT in the mid-latitude therefore adds to the list of the modes of large-scale atmospheric variability significantly influencing European summer precipitation variability.  相似文献   
102.
A composite analysis of Northern Hemisphere’s mid-winter tropospheric anomalies under the conditions of strong and weak stratospheric polar vortex was performed on NCEP/NCAR reanalysis data from 1948 to 2013 considering, as additional grouping criteria, the coincidental states of major seasonally relevant climate phenomena, such as El Niño-Southern Oscillation (ENSO), Quasi Biennial Oscillation and strong volcanic eruptions. The analysis reveals that samples of strong polar vortex nearly exclusively occur during cold ENSO states, while a weak polar vortex is observed for both cold and warm ENSO. The strongest tropospheric and near-surface anomalies are found for warm ENSO and weak polar vortex conditions, suggesting that internal tropospheric circulation anomalies related to warm ENSO constructively superpose on dynamical effects from the stratosphere. Additionally, substantial differences are found between the continental winter warming patterns under strong polar vortex conditions in volcanically-disturbed and volcanically-undisturbed winters. However, the small-size samples obtained from the multi-compositing prevent conclusive statements about typical patterns, dominating effects and mechanisms of stratosphere-troposphere interaction on the seasonal time scale based on observational/reanalysis data alone. Hence, our analysis demonstrates that patterns derived from observational/reanalysis time series need to be taken with caution as they not always provide sufficiently robust constraints to the inferred mechanisms implicated with stratospheric polar vortex variability and its tropospheric and near-surface signature. Notwithstanding this argument, we propose a limited set of mechanisms that together may explain a relevant part of observed climate variability. These may serve to define future numerical model experiments minimizing the sample biases and, thus, improving process understanding.  相似文献   
103.
Different flavors of the Atlantic Multidecadal Variability   总被引:2,自引:2,他引:0  
We investigate how differently-constructed indices for North Atlantic sea-surface temperatures (NASSTs) describe the “Atlantic Multidecadal Variability” (AMV) in a suite of unperturbed as well as externally-forced millennial (pre-industrial period) climate simulations. The simulations stem from an ensemble of Earth system models differing in both resolution and complexity. Different criteria exist to construct AMV indices capturing different aspects of the phenomenon. Although all representations of the AMV maintain strong multidecadal variability, they depict different characteristics of simulated low-frequency NASST variability, evolve differently in time and relate to different hemispheric teleconnections. Due to such multifaceted signatures in the ocean-surface as well as in the atmosphere, reconstructions of past AMV may not univocally reproduce multidecadal NASST variability. AMV features under simulated externally-forced pre-industrial climate conditions are not unambiguously distinguishable, within a linear framework, from AMV features in corresponding unperturbed simulations. This prevents a robust diagnosis of the simulated pre-industrial AMV as a predominantly internal rather than externally-forced phenomenon. We conclude that a multi-perspective assessment of multidecadal NASSTs variability is necessary for understanding the origin of the AMV, its physics and its climatic implications.  相似文献   
104.
We consider a network of telescopes capable of scanning all the observable sky each night and targeting Near-Earth objects (NEOs) in the size range of the Tunguska-like asteroids, from 160 m down to 10 m. We measure the performance of this telescope network in terms of the time needed to discover at least 50% of the impactors in the considered population with a warning time large enough to undertake proper mitigation actions. The warning times are described by a trimodal distribution and the telescope network has a 50% probability of discovering an impactor of the Tunguska class with at least one week of advance already in the first 10 yr of operations of the survey. These results suggest that the studied survey would be a significant addition to the current NEO discovery efforts.  相似文献   
105.
106.
107.
108.
The lower Pliocene Belvedere Formation, cropping out in the Crotone Basin, southern Italy, exhibits a metre‐scale to decametre‐scale shallow‐marine cyclicity that shares features of both high‐frequency sequences linked to shoreline shifts and controlled by minor relative sea‐level and/or sediment supply changes, and sedimentological cycles unrelated to shoreline shifts. In order to better understand the high‐frequency sequence stratigraphic framework of this succession, an integration of sedimentological, micropalaeontological (micro‐foraminifera assemblages) and mineralogical (heavy mineral abundance) data is used. From a sedimentological/stratigraphic point of view, wave‐ravinement surfaces bounding high‐frequency sequences, and associated substrate‐controlled ichnofacies, are prominent in outcrop and document environmental and water‐depth changes, whereas bedset boundaries separating sedimentological cycles have a more subtle field appearance and are only associated with changes of environmental energy. Moreover, condensed deposits are present only above wave‐ravinement surfaces, and the high‐frequency sequences bounded by these surfaces have a thickness that is an order of magnitude greater than that of the bedsets. Micro‐foraminifera assemblages may change, and the content of heavy minerals usually increases, across wave‐ravinement surfaces, whereas both parameters do not change significantly across bedset boundaries. The abundance of heavy minerals is systematically higher, with respect to the underlying and overlying deposits, in the condensed shell beds that overlie wave‐ravinement surfaces. An integrated sedimentological, micropalaeontological and mineralogical approach represents a powerful tool to discriminate between wave‐ravinement surfaces bounding high‐frequency sequences and bedset boundaries, and in general to investigate at the intra high‐frequency sequence scale. This integrated approach is expected to be very useful in the study of potentially all shallow‐marine successions composed of small‐scale cycles, in order to delineate a detailed sequence stratigraphic framework and understand the factors that controlled the cyclicity.  相似文献   
109.
This paper reports the results of two seismic experiments aimed at determining the wave field of explosion quakes at Stromboli Island (Mediterranean Sea, Southern Italy). The typical Strombolian activity mostly consists of explosive phenomena causing pyroclastic, materials to be emitted together with jets of volcanic gases from one or more craters. Stromboli is an active volcano characterized by persistent seismic activity consisting of explosion quakes that are seismic events associated with the explosive volcanic phenomena. Explosion quakes are short lived seismic events occurring intermittently whose amplitude tends to decrease with distance from the vent. A distinctive feature of explosion quakes is the presence on seismograms of two, often clearly distinct, seismic phases. The first, low-frequency seismic phase (<2 Hz) is in fact usually followed by a high-frequency seismic phase (>3–4 Hz) after one second or more. The first seismic phase of explosion quakes has been shown to be characterized by a nearly radial linear polarization and by an apparent propagation velocity estimated at 600–800 m/s. The second phase is characterized by a more chaotic motion and a lower apparent propagation velocity of 150–450 m/s. The wavefield associated with the first low-frequency seismic phase appears to be generated by a resonating P-wave seismic source accompanying gas explosion and emission of pyroclastic materials. The wavefield associated with the second high-frequency seismic phase of explosion quakes appears to be mainly composed of scattered and converted waves due to the critical topography of the volcano.  相似文献   
110.
A time-series approach to the estimation of recharge rate in unconfined aquifers of highly variable water level is proposed. The approach, which is based on the water-table fluctuation method (WTF), utilizes discrete water-level measurements. Other similar techniques require continuous measurements, which makes them impossible to apply in cases where no data from automatic loggers are available. The procedure is deployed at the Ressacada Farm site, southern Brazil, on a coastal shallow aquifer located in a humid subtropical climate where diurnal water-level variations of up to 1 m can follow a precipitation event. The effect of tidal fluctuations on the groundwater levels is analyzed using a harmonic component builder, while a time-variable drainage term is evaluated through an independent analysis and included in the assessment. The estimated recharge values are compared with those obtained from the continuous measurements showing a good agreement with the approaches for discrete dataset intervals of up to 15 days. Subsequently, the estimated recharge rates are incorporated into a transient groundwater-flow model and the water levels are compared showing a good match. Henceforth, the approach extends the applicability of WTF to noncontinuous water-level datasets in groundwater recharge studies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号