首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   133篇
  免费   7篇
  国内免费   1篇
测绘学   9篇
大气科学   16篇
地球物理   34篇
地质学   48篇
海洋学   10篇
天文学   15篇
自然地理   9篇
  2023年   2篇
  2022年   1篇
  2021年   4篇
  2020年   3篇
  2019年   9篇
  2018年   9篇
  2017年   3篇
  2016年   5篇
  2015年   6篇
  2014年   3篇
  2013年   8篇
  2012年   6篇
  2011年   11篇
  2010年   9篇
  2009年   12篇
  2008年   5篇
  2007年   3篇
  2006年   7篇
  2005年   3篇
  2004年   4篇
  2003年   2篇
  2002年   4篇
  2001年   3篇
  2000年   1篇
  1999年   1篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1941年   1篇
  1940年   1篇
  1934年   2篇
排序方式: 共有141条查询结果,搜索用时 15 毫秒
121.
122.
The Tibetan Plateau is a topographic feature of extraordinary dimension and has an important impact on regional and global climate. However, the glacial history of the Tibetan Plateau is more poorly constrained than that of most other formerly glaciated regions such as in North America and Eurasia. On the basis of some field evidence it has been hypothesized that the Tibetan Plateau was covered by an ice sheet during the Last Glacial Maximum (LGM). Abundant field- and chronological evidence for a predominance of local valley glaciation during the past 300,000 calendar years (that is, 300 ka), coupled to an absence of glacial landforms and sediments in extensive areas of the plateau, now refute this concept. This, furthermore, calls into question previous ice sheet modeling attempts which generally arrive at ice volumes considerably larger than allowed for by field evidence. Surprisingly, the robustness of such numerical ice sheet model results has not been widely queried, despite potentially important climate ramifications. We simulated the growth and decay of ice on the Tibetan Plateau during the last 125 ka in response to a large ensemble of climate forcings (90 members) derived from Global Circulation Models (GCMs), using a similar 3D thermomechanical ice sheet model as employed in previous studies. The numerical results include as extreme end members as an ice-free Tibetan Plateau and a plateau-scale ice sheet comparable, in volume, to the contemporary Greenland ice sheet. We further demonstrate that numerical simulations that acceptably conform to published reconstructions of Quaternary ice extent on the Tibetan Plateau cannot be achieved with the employed stand-alone ice sheet model when merely forced by paleoclimates derived from currently available GCMs. Progress is, however, expected if future investigations employ ice sheet models with higher resolution, bidirectional ice sheet-atmosphere feedbacks, improved treatment of the surface mass balance, and regional climate data and climate reconstructions.  相似文献   
123.
124.
This paper compares the results of the three state of the art climate-energy-economy models IMACLIM-R, ReMIND-R, and WITCH to assess the costs of climate change mitigation in scenarios in which the implementation of a global climate agreement is delayed or major emitters decide to participate in the agreement at a later stage only. We find that for stabilizing atmospheric GHG concentrations at 450?ppm CO2-only, postponing a global agreement to 2020 raises global mitigation costs by at least about half and a delay to 2030 renders ambitious climate targets infeasible to achieve. In the standard policy scenario??in which allocation of emission permits is aimed at equal per-capita levels in the year 2050??regions with above average emissions (such as the EU and the US alongside the rest of Annex-I countries) incur lower mitigation costs by taking early action, even if mitigation efforts in the rest of the world experience a delay. However, regions with low per-capita emissions which are net exporters of emission permits (such as India) can possibly benefit from higher future carbon prices resulting from a delay. We illustrate the economic mechanism behind these observations and analyze how (1) lock-in of carbon intensive infrastructure, (2) differences in global carbon prices, and (3) changes in reduction commitments resulting from delayed action influence mitigation costs.  相似文献   
125.
Supernova (SN) explosions inject a considerable amount of energy into the interstellar medium (ISM) in regions with high-to-moderate star formation rates. In order to assess whether the driving of turbulence by supernovae is also important in the outer Galactic disc, where the star formation rates are lower, we study the spatial distribution of molecular cloud (MC) inclinations with respect to the Galactic plane. The latter contains important information on the nature of the mechanism of energy injection into the ISM. We analyse the spatial correlations between the position angles (PAs) of a selected sample of MCs (the largest clouds in the catalogue of the outer Galaxy published by Heyer et al). Our results show that when the PAs of the clouds are all mapped to values into the  [0°, 90°]  interval, there is a significant degree of spatial correlation between the PAs on spatial scales in the range of 100–800 pc. These scales are of the order of the sizes of individual SN shells in low-density environments such as those prevailing in the outer Galaxy and where the metallicity of the ambient gas is of the order of the solar value or smaller. These findings suggest that individual SN explosions, occurring in the outer regions of the Galaxy and in likewise spiral galaxies, albeit at lower rates, continue to play an important role in shaping the structure and dynamics of the ISM in those regions. The SN explosions we postulate here are likely associated with the existence of young stellar clusters in the far outer regions of the Galaxy and the ultraviolet emission and low levels of star formation observed with the Galaxy Evolution Explorer (GALEX) satellite in the outer regions of local galaxies.  相似文献   
126.
256 samples ofLymnaea spp., each sample containing one square meter of mud, were taken in the littoral zone in the lower part of Lake Zurich. I investigated the dependence of the snails' distribution on the content of organic matter in the mud and on the distribution of hard substrates. Factors limiting the density ofLymnaea spp. are discussed.   相似文献   
127.
Jakob Flury 《Journal of Geodesy》2006,79(10-11):624-640
The GRACE (gravity recovery and climate experiment) and GOCE (gravity field and steady-state ocean circulation explorer) dedicated gravity satellite missions are expected to deliver the long-wavelength scales of the Earth’s gravity field with extreme precision. For many applications in Earth sciences, future research activities will have to focus on a similar precision on shorter scales not recovered by satellite missions. Here, we investigate the signal power of gravity anomalies at such short scales. We derive an average degree variance and power spectral density model for topography-reduced gravity anomalies (residual terrain model anomalies and de-trended refined Bouguer anomalies), which is valid for wavelengths between 0.7 and 100  km. The model is based on the analysis of gravity anomalies from 13 test regions in various geographical areas and geophysical settings, using various power spectrum computation approaches. The power of the derived average topography-reduced model is considerably lower than the Tscherning–Rapp free air anomaly model. The signal power of the individual test regions deviates from the obtained average model by less than a factor of 4 in terms of square-root power spectral amplitudes. Despite the topographic reduction, the highest signal power is found in mountainous areas and the lowest signal power in flat terrain. For the derived average power spectral model, a validation procedure is developed based on least-squares prediction tests. The validation shows that the model leads to a good prediction quality and realistic error measures. Therefore, for least-squares prediction, the model could replace the use of autocovariance functions derived from local or regional data.  相似文献   
128.
129.
130.
Ice sheets and deep ice cores have yielded a wealth of paleoclimate information based on continuous dating methods while independent radiometric ages of ice have remained elusive. Here we demonstrate the application of (234U/238U) measurements to dating the EPICA Dome C ice core based on the accumulation of 234U in the ice matrix from recoil during 238U decay out of dust bound within the ice. Measured (234U/238U) activity ratios within the ice generally increase with depth while the surface areas of the dust grains are relatively constant. Using a newly designed device for measuring surface area for small samples, we were able to estimate reliably the recoil efficiency of nuclides from dust to ice. The resulting calculated radiometric ages range between 80 ka and 870 ka. Measured samples in the upper 3100 m fall on the previously published age-depth profile. Samples in the 3200–3255 m section show a marked change from 723–870 ka to 85 ka indicating homogenization of the deep ice prior to resetting of the (234U/238U) age in the basal layers. The mechanism for homogenization is likely enhanced lateral ice flow due to high basal melting and geothermal heat flux.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号