首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   138篇
  免费   10篇
  国内免费   1篇
测绘学   2篇
大气科学   25篇
地球物理   40篇
地质学   45篇
海洋学   22篇
天文学   5篇
综合类   1篇
自然地理   9篇
  2021年   1篇
  2020年   1篇
  2019年   3篇
  2018年   5篇
  2017年   3篇
  2016年   8篇
  2015年   5篇
  2014年   9篇
  2013年   4篇
  2012年   8篇
  2011年   7篇
  2010年   6篇
  2009年   7篇
  2008年   8篇
  2007年   5篇
  2006年   6篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   4篇
  1997年   3篇
  1996年   4篇
  1995年   2篇
  1994年   3篇
  1993年   2篇
  1992年   1篇
  1991年   3篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   3篇
  1981年   5篇
  1979年   4篇
  1978年   5篇
  1976年   1篇
  1975年   3篇
  1974年   1篇
  1973年   2篇
  1969年   1篇
  1960年   1篇
排序方式: 共有149条查询结果,搜索用时 46 毫秒
1.
Understanding the hydrologic connectivity between kettle holes and shallow groundwater, particularly in reaction to the highly variable local meteorological conditions, is of paramount importance for tracing water in a hydro(geo)logically complex landscape and thus for integrated water resource management. This article is aimed at identifying the dominant hydrological processes affecting the kettle holes' water balance and their interactions with the shallow groundwater domain in the Uckermark region, located in the north-east of Germany. For this reason, based on the stable isotopes of oxygen (δ18O ) and hydrogen (δ2H ), an isotopic mass balance model was employed to compute the evaporative loss of water from the kettle holes from February to August 2017. Results demonstrated that shallow groundwater inflow may play the pivotal role in the processes taking part in the hydrology of the kettle holes in the Uckermark region. Based on the calculated evaporation/inflow (E/I) ratios, most of the kettle holes (86.7%) were ascertained to have a partially open, flow-through-dominated system. Moreover, we identified an inverse correlation between E/I ratios and the altitudes of the kettle holes. The same holds for electrical conductivity (EC) and the altitudes of the kettle holes. In accordance with the findings obtained from this study, a conceptual model explaining the interaction between the shallow groundwater and the kettle holes of Uckermark was developed. The model exhibited that across the highest altitudes, the recharge kettle holes are dominant, where a lower ratio of E/I and a lower EC was detected. By contrast, the lowest topographical depressions represent the discharge kettle holes, where a higher ratio of E/I and EC could be identified. The kettle holes existing in between were categorized as flow-through kettle holes through which the recharge takes place from one side and discharge from the other side.  相似文献   
2.
Subsurface flow and heat transport near Freienbrink, NE Germany, was simulated in order to study groundwater–surface water exchange between a floodplains aquifer and a section of the lowland River Spree and an adjacent oxbow. Groundwater exfiltration was the dominant process, and only fast surface water level rises resulted in temporary infiltration into the aquifer. The main groundwater flow paths are identified based on a 3D groundwater flow model. To estimate mass fluxes across the aquifer–surface water interfaces, a 2D flow and heat transport modelling approach along a transect of 12 piezometers was performed. Results of steady‐state and transient water level simulations show an overall high accuracy with a Spearman coefficient ρ = 0.9996 and root mean square error (RMSE) = 0.008 m. Based on small groundwater flow velocities of about 10?7 to 10?6 ms?1, mean groundwater exfiltration rates of 233 l m?2 d?1 are calculated. Short periods of surface water infiltration into the aquifer do not exceed 10 days, and the infiltration rates are in the same range. The heat transport was modelled with slightly less accuracy (ρ = 0.8359 and RMSE = 0.34 °C). In contrast to the predominant groundwater exfiltration, surface water temperatures determine the calculated temperatures in the upper aquifer below both surface water bodies down to 10 m during the whole simulation period. These findings emphasize prevailing of heat conduction over advection in the upper aquifer zones, which seems to be typical for lowland streams with sandy aquifer materials and low hydraulic gradients. Moreover, this study shows the potential of coupled numerical flow and heat transport modelling to understand groundwater–surface water exchange processes in detail. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
3.
Changes in ownership of limited entry permits by “local” residents of the region where a fishery occurs may have significant economic and social implications for fishery-dependent regions. This paper examines changes in local permit ownership in Alaska salmon fisheries, for which a long-term decline in rural local permit ownership is an important policy concern. Theoretically, permit markets allocate permits over time to the individuals who are willing to pay the most for them. Any factors that differentially affect what local and non-local residents are willing to pay for permits may affect the equilibrium share of permits held by local residents. For remote rural fisheries in particular, these may include differences between local and non-local residents with respect to access to and costs of financing permits and boats, costs of travel to the fishery, opportunity costs of participation in the fishery, and many other factors. As a fishery increases in profitability, differences between local and non-local residents in access to financing matter more while differences in costs of travel and opportunity costs matter less in the relative ranking of what local and non-local residents are willing to pay for permits. This tends to increase the share of non-local residents among buyers willing to pay the market price for permits, reducing the equilibrium share of permits held by local residents. This leads to a conflict between two important policy goals: increasing fishery profitability and maintaining rural local permit ownership. Consistent with predictions of this theory, the local share of permit ownership in Alaska salmon fisheries is negatively related to permit prices (an indicator of fishery profitability).  相似文献   
4.
5.
Lacustrine groundwater discharge (LGD) transports nutrients from a catchment to a lake, which may fuel eutrophication, one of the major threats to our fresh waters. Unfortunately, LGD has often been disregarded in lake nutrient studies. Most measurement techniques are based on separate determinations of volume and nutrient concentration of LGD: Loads are calculated by multiplying seepage volumes by concentrations of exfiltrating water. Typically low phosphorus (P) concentrations of pristine groundwater often are increased due to anthropogenic sources such as fertilizer, manure or sewage. Mineralization of naturally present organic matter might also increase groundwater P. Reducing redox conditions favour P transport through the aquifer to the reactive aquifer‐lake interface. In some cases, large decreases of P concentrations may occur at the interface, for example, due to increased oxygen availability, while in other cases, there is nearly no decrease in P. The high reactivity of the interface complicates quantification of groundwater‐borne P loads to the lake, making difficult clear differentiation of internal and external P loads to surface water. Anthropogenic sources of nitrogen (N) in groundwater are similar to those of phosphate. However, the environmental fate of N differs fundamentally from P because N occurs in several different redox states, each with different mobility. While nitrate behaves essentially conservatively in most oxic aquifers, ammonium's mobility is similar to that of phosphate. Nitrate may be transformed to gaseous N2 in reducing conditions and permanently removed from the system. Biogeochemical turnover of N is common at the reactive aquifer‐lake interface. Nutrient loads from LGD were compiled from the literature. Groundwater‐borne P loads vary from 0.74 to 2900 mg PO4‐P m?2 year?1; for N, these loads vary from 0.001 to 640 g m?2 year?1. Even small amounts of seepage can carry large nutrient loads due to often high nutrient concentrations in groundwater. Large spatial heterogeneity, uncertain areal extent of the interface and difficult accessibility make every determination of LGD a challenge. However, determinations of LGD are essential to effective lake management. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
6.
7.
A two-layered model is considered in which the upper layer is continuously stratified and the lower layer is homogeneous. The system is driven by atmospheric forces. Bottom stress and topography are included in the model. The linear three-dimensional hydrodynamical equations are used to describe the system. Taking the eddy viscosity in the upper layer as inversely proportional to the static stability, the dependent variables are expanded in terms of continuous functions in the vertical (eigenfunctions). Using this method it is possible to compute currents and internal displacements at any depth in the upper layer. The three-dimensional structure of the lower layer is not considered in this model. The equations describing the lower layer are integrated over depth to give depth mean currents. Using a staggered finite-difference grid in the horizontal and a forward time-stepping procedure, numerical test experiments are carried out for a cross section and for a closed rectangular basin.  相似文献   
8.
Like almost all fields of science, hydrology has benefited to a large extent from the tremendous improvements in scientific instruments that are able to collect long-time data series and an increase in available computational power and storage capabilities over the last decades. Many model applications and statistical analyses (e.g., extreme value analysis) are based on these time series. Consequently, the quality and the completeness of these time series are essential. Preprocessing of raw data sets by filling data gaps is thus a necessary procedure. Several interpolation techniques with different complexity are available ranging from rather simple to extremely challenging approaches. In this paper, various imputation methods available to the hydrological researchers are reviewed with regard to their suitability for filling gaps in the context of solving hydrological questions. The methodological approaches include arithmetic mean imputation, principal component analysis, regression-based methods and multiple imputation methods. In particular, autoregressive conditional heteroscedasticity (ARCH) models which originate from finance and econometrics will be discussed regarding their applicability to data series characterized by non-constant volatility and heteroscedasticity in hydrological contexts. The review shows that methodological advances driven by other fields of research bear relevance for a more intensive use of these methods in hydrology. Up to now, the hydrological community has paid little attention to the imputation ability of time series models in general and ARCH models in particular.  相似文献   
9.
Glaciostratigraphic investigations at one key locality (Haldum), 9 major and about 160 minor localities in East and Central Jutland, Denmark, together with laboratory work, have led to the establishment of a stratigraphy consisting of 10 till units, usually separated by meltwater deposits. The stratigraphy is in some degree supported by thermoluminescence datings. The complete sequence includes one till unit with associated meltwater deposits of Menapian age, three till units with intercalated meltwater deposits of Elsterian age, marine sediments deposited during the Holsteininan, and three till units with intercalated of Elsterian age, marine sediments deposited during the Holsteinian, and three till units with intercalated glaciofluvial sedimants of Saalian age. Eemian deposits are present above this level, and the whole sequence is capped by till and meltwater deposits related to three glacial advances during the Weichselian.  相似文献   
10.
The authors examined the variability in wintertime cyclone activity and storm tracks and their relation to precipitation over China for the period 1951–2006 using the observational data.Two apparent modes of variability were assumed for the cyclone activity and storm tracks.The first mode describes the oscillation in the strength of the storm tracks in East Asia,which significantly increased since the mid-1980s,whereas the second mode describes a seesaw oscillation in the storm track strength between the Central-Southeast China and northern East Asia.The storm tracks over the Central-Southeast China have increased since the late 1960s.The possible causes for the variation of the cyclone activity and storm tracks are also explored.It is shown that wintertime precipitation,which has increased since the mid-1980s,concentrates in Central-Southeast China.The enhancement may be caused by the first mode of variability of storm tracks,whereas the interannual variability of precipitation may be linked to the second mode of the storm track variability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号