首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52篇
  免费   4篇
测绘学   2篇
大气科学   6篇
地球物理   19篇
地质学   21篇
海洋学   4篇
天文学   4篇
  2021年   1篇
  2019年   3篇
  2018年   3篇
  2017年   2篇
  2016年   4篇
  2015年   6篇
  2014年   3篇
  2013年   1篇
  2012年   1篇
  2011年   3篇
  2010年   3篇
  2009年   10篇
  2008年   4篇
  2007年   1篇
  2005年   1篇
  2003年   1篇
  2002年   2篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1989年   1篇
排序方式: 共有56条查询结果,搜索用时 546 毫秒
21.
The 1224 Mt. Etna eruption is a significant event both in terms of the mass of erupted materials and because it involved the lower eastern slope of the volcano, reaching down to the sea. Nevertheless, it is unknown to current historical catalogues. According to the historical sources, only two other lava flows actually reached as far as the sea: in 396 BC, just north of the present-day inhabited area of Acireale, according to the geological data alone, and in 1669, when the lava covered the south-eastern flank of Mt. Etna and damaged Catania. We present and discuss the two medieval sources that attest to the eruption of 1224 and make available the original texts. Furthermore, through the close analysis of the historical and topographic context of the Etna area, taking account of the roads and ports in the early 13th century, we have tried to single out the possible area of the lava's outlet into the sea in 1224 on historical grounds. A repeat of an eruption similar to that of 1224 would have a serious impact today as the coast is densely populated.  相似文献   
22.
23.
In the present work we analyse one of the active normal faults affecting the central Apennines, i.e. the Mt. Morrone normal fault system. This tectonic structure, which comprises two parallel, NW-SE trending fault segments, is considered as potentially responsible for earthquakes of magnitude ≥ 6.5 and its last activation probably occurred during the second century AD. Structural observations performed along the fault planes have allowed to define the mainly normal kinematics of the tectonic structure, fitting an approximately N 20° trending extensional deformation. Geological and geomorphological investigations performed along the whole Mt. Morrone south-western slopes permitted us to identify the displacement of alluvial fans, attributed to Middle and Late Pleistocene by means of tephro-stratigraphic analyses and geomorphological correlations with dated lacustrine sequences, along the western fault branch. This allowed to evaluate in 0.4 ± 0.07 mm/year the slip rate of this segment. On the other hand, the lack of synchronous landforms and/or deposits that can be correlated across the eastern fault segment prevented the definition of the slip rate related to this fault branch. Nevertheless, basing on a critical review of the available literature dealing with normal fault systems evolution, we hypothesised a total slip rate of the fault system in the range of 0.4 ± 0.07 to 0.8 ± 0.09 mm/year. Moreover, basing on the length at surface of the Mt. Morrone fault system (i.e. 22–23 km) we estimated the maximum expected magnitude of an earthquake that might originate along this tectonic structure in the order of 6.6–6.7.  相似文献   
24.
25.
We present an updated compilation of Greek directional archaeomagnetic data for the last 4.5 millennia. The data set comprises 89 directions from archaeological artefacts and volcanic rocks. Most of the data come from the Late Bronze Age (1700-1400 BC) that is the flourishing period of the Minoan civilization in Crete, while parts of the classical (480-323 BC), Hellenistic (323-31 BC) and Roman (146 BC-330 AD) periods are also well covered. The dataset has been analysed using the Bayesian approach for curve building and a directional secular variation (SV) curve for Greece is proposed. Comparisons with regional and global model predictions show a general agreement even though some discrepancies are observed for some time intervals. The new curves together with the previously published intensity SV curve for Greece, also using the Bayesian approach, form a homogeneous set and enrich our knowledge of the full geomagnetic field vector variation in Greece during the last millennia.  相似文献   
26.
Optically Stimulated Luminescence (OSL) enables the chronology of the late Pleistocene evolution for the Val d'Agri intermontane basin of Southern Apennines to be defined in the frame of Mediterranean geodynamic and climate changes. Quartz sand from braided floodplain and alluvial fan depositional systems was analyzed using the coarse-grained, single-aliquot regenerative-dose (SAR) technique. The obtained optical ages are mostly consistent with other assessments (radiocarbon, tephrochronology) and stratigraphic constraints. OSL allows for the dating to 56–43 ka of an asymmetric subsidence stage that forced alluvial fan progradation, filling of a former lacustrine area, and development of an axial alluvial plain. A short period of Mediterranean-type pedogenesis, recorded at the top of the prograding-aggrading fans (OSL age bracket 43–32 ka), corresponds with MIS 3. During the subsequent stage of decline of vegetation cover, possibly corresponding to MIS 2, the latest progradation of alluvial fans occurred. The subsequent uplift and breakthrough of the basin threshold during the latest Pleistocene and Holocene induced entrenchment of the drainage network. The results presented here provide an example of the usefulness of OSL dating in intermontane continental settings where other geochronological constraints are scarce.  相似文献   
27.
The Mediterranean Sea constitutes a unique basin from an historical and archaeological point of view, as it has been a privileged way of communication for thousands of years for the people that dwelled on its shores. Their passage has left many traces on the seabeds in the areas where the ancient commercial routes passed, and remains of structures where moorings, havens or dwellings existed. Some of these structures, nowadays submerged, offer interesting indications aiding the reconstruction of the ancient coastlines. This contribution aims to examine recent work in coastal geo-archaeology, targeting both (1) gathering and discussion of the data, particularly those pertaining to the Italian coasts; and (2) commentary on the methodological debate and verification of the possibility of a protocol that may contain unequivocal referring elements.To investigate the archaeological evidence currently underwater because of the relative sea level variations (harbour infrastructures, fishponds, villae maritimae, caves – nymphaei, private or public buildings or town quarters, pre- and protohistorical villages, quarries, caves, etc.), a clear and more coherent methodological assumption may be needed. The archaeological interpretation must initially establish the maritime and/or harbour nature and vocation of the site, determine its typology and specific usage, analyze the elements of its building techniques (that reveal themselves as meaningful markers of height or depth at the time of building) and its “functional” elements (the measure of the emerged part with respect to the average sea level), and point out the time of construction, its chronological range of usage/frequentation, the dynamics of its abandonment/destruction/obliteration.The evaluation of both the height and functional depth to the mean sea level depends on the typology of the archaeological evidence, its use and the local tide amplitudes. The surface of a pier surely has a functional elevation different from that of a haulage area or a platea or a pavement.  相似文献   
28.
A sedimentological, biostratigraphical and geochemical (stable isotopes and Rock‐Eval parameters) analysis was performed on four Swiss successions, in order to examine the expression of the Toarcian Oceanic Anoxic Event along a north–south transect, from the Jura through the Alpine Tethys (Sub‐Briançonnais and Lombardian basins). The locations were selected to represent a range of palaeoceanographic positions from an epicontinental sea to a more open marine setting. The Toarcian Oceanic Anoxic Event was recognized by the presence of the characteristic negative carbon‐isotope excursion in carbonate (ca 2 to 4‰) and organic matter (ca 4 to 5‰) at the base of the falciferum ammonite Zone (NJT6 nannofossil Zone). The sedimentary expression of the Toarcian Oceanic Anoxic Event varies along the transect from laminated mudstone rich in total organic carbon (≤11 wt.%) in the Jura, to thin‐bedded marl (≤5 wt.% total organic carbon) in the Sub‐Briançonnais Basin and to hemipelagic reddish marly limestone (total organic carbon <0·05 wt.%) in equivalent levels from the Lombardian Basin. The carbon‐isotope excursion is thus independent of facies and palaeoceanographic position. The low nannofossil abundance and the peak in Calyculaceae in the Jura and the Sub‐Briançonnais Basin indicate low salinity surface waters and stratified water masses in general. Sedimentological observations (for example, obliquely‐bedded laminae and homogeneous mud layers containing rip‐up clasts) indicate the presence of dynamic conditions, suggesting that water mass stratification was episodically disrupted during the Toarcian Oceanic Anoxic Event. The proposed correlation highlights a stratigraphic gap and/or condensed interval between the Pliensbachian–Toarcian boundary and the Toarcian Oceanic Anoxic Event interval (most of the tenuicostatum ammonite Zone is missing), which is also observed in coeval European sections and points to the influence of sea‐level change and current dynamics. This transect shows that the sedimentary expression of the Toarcian Oceanic Anoxic Event is not uniform across the Alpine Tethys, supporting the importance of local conditions in determining how this event is recorded across different palaeoceanographic settings.  相似文献   
29.
We present an updated geological evolution of Mount Etna volcano based on new 40Ar/39Ar age determinations and stratigraphic data integrating the previous K/Ar ages. Volcanism began at about 500 ka ago through submarine eruptions on the Gela–Catania Foredeep basin. About 300 ka ago fissure-type eruptions occurred on the ancient alluvial plain of the Simeto River forming a lava plateau. From about 220 ka ago the eruptive activity was localised mainly along the Ionian coast where fissure-type eruptions built a shield volcano. Between 129 and 126 ka ago volcanism shifted westward toward the central portion of the present volcano (Val Calanna–Moscarello area). Furthermore, scattered effusive eruptions on the southern periphery of Etna edifice occurred until about 121 ka ago. The stabilization of the plumbing system on the Valle del Bove area is marked by the building of two small polygenic edifices, Tarderia and Rocche volcanoes. Their eruptive activity was rather coeval ending 106 and 102 ka ago, respectively. During the investigated time-span volcanism in Etna region was controlled by a main E–W extensional tectonic related to the reactivation of Malta Escarpment fault system in eastern Sicily. Electronic supplementary material The online version of this article () contains supplementary material, which is available to authorized users. An erratum to this article can be found at  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号