首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   441篇
  免费   10篇
  国内免费   4篇
测绘学   19篇
大气科学   75篇
地球物理   70篇
地质学   125篇
海洋学   20篇
天文学   72篇
综合类   7篇
自然地理   67篇
  2022年   5篇
  2021年   3篇
  2020年   6篇
  2018年   11篇
  2017年   10篇
  2016年   6篇
  2015年   7篇
  2014年   9篇
  2013年   20篇
  2012年   6篇
  2011年   26篇
  2010年   8篇
  2009年   17篇
  2008年   11篇
  2007年   16篇
  2006年   14篇
  2005年   11篇
  2004年   24篇
  2003年   15篇
  2002年   14篇
  2001年   12篇
  2000年   12篇
  1999年   10篇
  1998年   7篇
  1997年   10篇
  1996年   12篇
  1995年   9篇
  1994年   15篇
  1993年   5篇
  1992年   6篇
  1991年   10篇
  1990年   9篇
  1989年   5篇
  1988年   6篇
  1987年   3篇
  1986年   3篇
  1985年   5篇
  1984年   10篇
  1983年   7篇
  1982年   3篇
  1981年   4篇
  1979年   4篇
  1978年   5篇
  1977年   5篇
  1976年   6篇
  1975年   3篇
  1974年   4篇
  1973年   5篇
  1972年   2篇
  1971年   9篇
排序方式: 共有455条查询结果,搜索用时 15 毫秒
121.
Journal of Paleolimnology - In this study, radiocarbon-dated geochemical and diatom records from Lake Vorota located within the informal meteorological ‘pole of cold’ of the northern...  相似文献   
122.
A new set of low-resolution spectral and UBVJHKL-photometric observations of the symbiotic nova PU Vul is presented. The binary has been evolving after its symbiotic nova outburst in 1977 and now it is in the nebular stage. It is found that the third orbital cycle(after 1977) was characterized by great changes in associated light curves. Now, PU Vul exhibits a sine-wave shape in all the light curves(with an amplitude in the U band of about 0.7 mag), which is typical for symbiotic stars in the quiescent state. Brightness variability due to pulsations of the cool component is now clearly visible in the VRI light curves. The amplitude of the pulsations increases from 0.5 mag in the V band to 0.8 mag in the I band. These two types of variability, as well as a very slow change in the physical parameters of the hot component due to evolution after the outburst of 1977, influence the spectral energy distribution(SED)of the system. The variability of emission lines is highly complex. Only hydrogen line fluxes vary with orbital phase. An important feature of the third orbital cycle is the first emergence of the OVI, 6828  Raman scattering line. We determine the temperature of the hot component by means of the Zanstra method applied to the He II, 4686  line. Our estimate is about 150 000 K for the spectrum obtained near orbital maximum in 2014. The VO spectral index derived near pulsation minimum corresponds to M6 spectral class for the cool component of PU Vul.  相似文献   
123.
Mathematical Geosciences -  相似文献   
124.
We report on observations of the full Moon brightness temperature covering the frequency range of 300-950 GHz, and also on observations of the lunar eclipse of July 16, 2000, though only covering the frequency range of 165-365 GHz due to poor atmospheric transmission at higher frequencies. All observations were performed from the summit of Mauna Kea (HI) using a Fourier Transform Spectrometer mounted on the Caltech Submillimeter Observatory and supplemented by measurements of the atmospheric opacity using a 183 GHz Water Vapor Monitor. The telescope was pointed to the center of the lunar disk (with a footprint of ∼45-15 km on the Moon at 300 through 900 GHz). In order to obtain the correct values of the Moon brightness temperatures at all frequencies we carefully corrected for the atmospheric absorption, which varies across the submillimeter domain. This correction is fully described. The measured pre-eclipse brightness temperature is around 337 K in the 165-365 GHz range. This temperature slightly increases with frequency to reach ∼353 K at 950 GHz, according to previous broader band data. The magnitude of the temperature drop observed during the eclipse at 265 GHz (central frequency of the band covered) was about ∼70 K, in very good agreement with previous millimeter-wave measurements of other lunar eclipses. We detected, in addition, a clear frequency trend in the temperature drop that has been compared to a thermal and microwave emission model of the lunar regolith, with the result of a good match of the relative flux drop at different frequencies between model and measurements.  相似文献   
125.
126.
A portion of the debate about climate reconstructions of the past millennium, and in particular about the well-known Mann-Bradley-Hughes (“MBH” 1998, 1999) reconstructions, has become disconnected from the goal of understanding natural climate variability. Here, we reflect on what can be learned from recent scientific exchanges and identify important challenges that remain to be addressed openly and productively by the community. One challenge arises from the real, underlying trend in temperatures during the instrumental period. This trend can affect regression-based reconstruction performance in cases where the calibration period does not appropriately cover the range of conditions encountered during the reconstruction. However, because it is tied to a unique spatial pattern driven by change in radiative balance, the trend cannot simply be removed in the method of climate field reconstruction used by MBH on the statistical argument of preserving degrees of freedom. More appropriately, the influence from the trend can be taken into account in some methods of significance testing. We illustrate these considerations as they apply to the MBH reconstruction and show that it remains robust back to AD 1450, and given other empirical information also back to AD 1000. However, there is now a need to move beyond hemispheric average temperatures and to focus instead on resolving climate variability at the socially more relevant regional scale.  相似文献   
127.
The Mann et al. (1998) Northern Hemisphere annual temperature reconstruction over 1400–1980 is examined in light of recent criticisms concerning the nature and processing of included climate proxy data. A systematic sequence of analyses is presented that examine issues concerning the proxy evidence, utilizing both indirect analyses via exclusion of proxies and processing steps subject to criticism, and direct analyses of principal component (PC) processing methods in question. Altogether new reconstructions over 1400–1980 are developed in both the indirect and direct analyses, which demonstrate that the Mann et al. reconstruction is robust against the proxy-based criticisms addressed. In particular, reconstructed hemispheric temperatures are demonstrated to be largely unaffected by the use or non-use of PCs to summarize proxy evidence from the data-rich North American region. When proxy PCs are employed, neither the time period used to “center” the data before PC calculation nor the way the PC calculations are performed significantly affects the results, as long as the full extent of the climate information actually in the proxy data is represented by the PC time series. Clear convergence of the resulting climate reconstructions is a strong indicator for achieving this criterion. Also, recent “corrections” to the Mann et al. reconstruction that suggest 15th century temperatures could have been as high as those of the late-20th century are shown to be without statistical and climatological merit. Our examination does suggest that a slight modification to the original Mann et al. reconstruction is justifiable for the first half of the 15th century (∼+0.05), which leaves entirely unaltered the primary conclusion of Mann et al. (as well as many other reconstructions) that both the 20th century upward trend and high late-20th century hemispheric surface temperatures are anomalous over at least the last 600 years. Our results are also used to evaluate the separate criticism of reduced amplitude in the Mann et al. reconstructions over significant portions of 1400–1900, in relation to some other climate reconstructions and model-based examinations. We find that, from the perspective of the proxy data themselves, such losses probably exist, but they may be smaller than those reported in other recent work. The National Center for Atmospheric Research is sponsored by the National Science Foundation, USA. The authors contributed equally to the development of the research presented.  相似文献   
128.
Fluctuating plume models provide a useful conceptual paradigm in the understanding of plume dispersion in a turbulent flow. In particular, these models have enabled analytical predictions of higher-order concentration moments, and the form of the one-point concentration probability density function (PDF). In this paper, we extend the traditional formalism of these models, grounded in the theory of homogeneous and isotropic turbulent flow, to two cases: namely, a simple sheared boundary layer and a large array of regular obstacles. Some very high-resolution measurements of plume dispersion in a water channel, obtained using laser-induced fluorescence (LIF) line-scan techniques are utilised. These data enable us to extract time series of plume centroid position (plume meander) and dispersion in the relative frame of reference in unprecedented detail. Consequently, experimentally extracted PDFs are able to be directly compared with various theoretical forms proposed in the literature. This includes the PDF of plume centroid motion, the PDF of concentration in the relative frame, and a variety of concentration moments in the absolute and relative frames of reference. The analysis confirms the accuracy of some previously proposed functional forms of model components used in fluctuating plume models, as well as suggesting some new forms necessary to deal with the complex boundary conditions in the spatial domain.  相似文献   
129.
A mineralogical and chemical analysis has been performed on the largest mass (8750 g) of the Girgenti, Italy, meteorite, from the collection of the Smithsonian Institution, Washington, D.C. The mineralogical composition is olivine, Fa24–25; hypersthene, Fs21 –22; plagioclase, An12; maskelynite; whitlockite; nickel-iron; troilite; chromite and ilmenite. Girgenti is a severly metamorphosed stone, whose total iron content (23.5%) is somewhat higher than the average for hypersthene chondrites.  相似文献   
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号