首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   257篇
  免费   20篇
  国内免费   2篇
测绘学   9篇
大气科学   22篇
地球物理   60篇
地质学   129篇
海洋学   14篇
天文学   27篇
自然地理   18篇
  2024年   1篇
  2023年   2篇
  2022年   2篇
  2021年   9篇
  2020年   7篇
  2019年   14篇
  2018年   12篇
  2017年   16篇
  2016年   19篇
  2015年   14篇
  2014年   13篇
  2013年   19篇
  2012年   11篇
  2011年   29篇
  2010年   29篇
  2009年   16篇
  2008年   12篇
  2007年   10篇
  2006年   7篇
  2005年   4篇
  2004年   8篇
  2003年   2篇
  2002年   7篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1995年   3篇
  1992年   1篇
  1986年   1篇
  1978年   1篇
  1975年   2篇
  1974年   2篇
  1973年   1篇
排序方式: 共有279条查询结果,搜索用时 17 毫秒
181.
182.
The prehistoric Mt Wilberg rock avalanche, Westland, New Zealand   总被引:1,自引:0,他引:1  
The Mt Wilberg rock avalanche in Westland, New Zealand occurred before 1300 AD and may have occurred as a consequence of an Alpine fault earthquake in ca. 1220 AD or earlier. Its ∼40 × 106 m3 deposit may have briefly obstructed the Wanganui River, but only about 25% of its surface morphology still survives, on terraces isolated from river erosion. The landslide appears to have moved initially as a block, in a direction controlled by a strong rock mass at the base of the source area, before disintegrating and spreading across terraces, fans, and floodplains. Rock avalanche deposits in Westland have relatively short expected lifetimes in the rugged terrain and high rainfall of the area; hence, the hazard from such events is under-represented by their current remnants.  相似文献   
183.
In this study, an improved and complete secondary organic aerosols (SOA) chemistry scheme was implemented in the CHIMERE model. The implementation of isoprene chemistry for SOA significantly improves agreement between long series of simulated and observed particulate matter concentrations. While simulated organic carbon concentrations are clearly improved at elevated sites by adding the SOA scheme, time correlation are impaired at low level sites in Portugal, Italy and Slovakia. At several sites a clear underestimation by the CHIMERE model is noticed in wintertime possibly due to missing wood burning emissions as shown in previous modeling studies. In Europe, the CHIMERE model gives yearly average SOA concentrations ranging from 0.5 μg m  − 3 in the Northern Europe to 4 μg m  − 3 over forested regions in Spain, France, Germany and Italy. In addition, our work suggests that during the highest fire emission periods, fires can be the dominant source of primary organic carbon over the Mediterranean Basin, but the SOA contribution from fire emissions is low. Isoprene chemistry has a strong impact on SOA formation when using current available kinetic schemes.  相似文献   
184.
Paleoclimate research is essential to determine the natural variability of climate and to place the current climate change into its natural context. The current need is to generate the highest temporal resolution paleoclimatic reconstructions possible in order to assess the natural variability of the climate system, but also to test the ability of numerical models to simulate conditions different from the ones observed with the relatively short instrumental records. In this paper, we show that CAT-scan analysis of sedimentary sequences, with its 1 mm downcore resolution, can be used to identify millennial to seasonal cycles in sedimentary sequences. In examples from the St. Lawrence Estuary, Eastern Canada, spectral analysis of the CAT-scan data from Holocene postglacial sediments revealed millennial- to centennial-scale oscillations possibly associated with either solar variability, changes in relative sea-level or tidal amplitude. Similarly, spectral analysis of Holocene and Sangamonian glaciomarine sequences revealed decadal- to annual-scale oscillations with periods close to the one previously associated with the North Atlantic Oscillation (NAO), whereas spectral analysis of the CAT-scan data from the Sangamonian rhythmites possibly revealed seasonal cycles.  相似文献   
185.
The subject of change detection in climate time series has recently received greater interest as the perception of a human-induced change in the climate is now widely accepted. However, changes in regional precipitation and temperature remain uncertain. This study characterizes projected fine-scale changes in precipitation and temperature in continental Southeast Asia over the period 1960?C2049. Twenty four annual variables were derived from grid-based daily precipitation and temperature produced by the PRECIS regional climate model under A2 and B2 scenarios. These time series, capturing precipitation intensities (classified as low, medium and high), seasonality and extremes in precipitation and temperature, were subjected to the modified Mann-Kendall trend detection test accounting for long-term persistence. The results indicate that temperature increases over the whole region with steeper trends in higher latitudes. Increases in annual precipitation, mainly restricted to Myanmar and the Gulf of Thailand, result from increases in high precipitation during the wet season. Decreases are observed mainly over the sea and caused by a reduction of low precipitation. Changes in the occurrence of the monsoon affect the low-latitude sea areas only. By showing that significant precipitation change are minor over land areas, these results challenge most of the previous studies that suggested significant precipitation changes over Southeast Asia, often mixing up multi-decadal variability and long-term unidirectional trends. Significant changes in precipitation and temperature may induce higher agricultural yields as steepest temperature and precipitation increases will predominantly affect the coldest and driest land areas of the region.  相似文献   
186.
The kinetics of abiotic redox reactions induced by hydrogen are poorly documented although it represents a growing area of interest in terms of both nuclear waste storage assessment and the comprehensive study of hydrogen-rich fluid in mid-ocean ridge hydrothermal systems. We present an experimental kinetics study of pyrite reduction into pyrrhotite under significant H2 pressure and mid-hydrothermal conditions. We describe the mechanism and kinetic behavior of this reaction by combining textural and solution analyses under various conditions of temperature, pyrite particles size, H2 pressure and pH. When pH is controlled by calcite, the reaction presents all the characteristics of a coupled dissolution-precipitation mechanism occurring at the pyrite-pyrrhotite interface. By considering the chemical affinity of the coupled reaction as a function of reaction extent, we demonstrate that the spatial coupling is induced both by pyrite as a substrate for pyrrhotite nucleation and by the role of fluid chemistry at the reaction front. Far from equilibrium with respect to pyrite, the kinetics of sulfide production associated with the reaction are linearly related to the square root of time with an activation energy of 53 kJ/mol. This value is higher than what is expected for a diffusion-controlled kinetic regime. We suggest that the reaction rate is controlled both by pyrite reductive dissolution and by sulfide diffusion through the porous pyrrhotite microstructure. We provide a simple sulfide production-rate expression on the basis of our measured rate constants that can be used in geochemical modeling to further evaluate the impact of hydrogen on pyrite under nuclear waste disposal conditions.  相似文献   
187.
A high-resolution micropalaeontological study, combined with geochemical and sedimentological analyses was performed on the Tiefengraben, Schlossgraben and Eiberg sections (Austrian Alps) in order to characterize sea-surface carbonate production during the end-Triassic crisis. At the end-Rhaetian, the dominant calcareous nannofossil Prinsiosphaera triassica shows a decrease in abundance and size and this is correlated with a increase in δ18O and a gradual decline in δ13Ccarb values. Simultaneously, benthic foraminiferal assemblages show a decrease in diversity and abundance of calcareous taxa and a dominance of infaunal agglutinated taxa. The smaller size of calcareous nannofossils disturbed the vertical export balance of the biological carbon pump towards the sea-bottom, resulting in changes in feeding strategies within the benthic foraminiferal assemblages from deposit feeders to detritus feeders and bacterial scavengers. These micropalaeontological data combined with geochemical proxies suggest that changes in seawater chemistry and/or cooling episodes might have occurred in the latest Triassic, leading to a marked decrease of carbonate production. This in turn culminated in the quasi-absence of calcareous nannofossils and benthic foraminifers in the latest Triassic. The aftermath (latest Triassic earliest Jurassic) was characterised by abundance peaks of “disaster” epifaunal agglutinated foraminifera Trochammina on the sea-floor. Central Atlantic Magmatic Province (CAMP) paroxysmal activity, superimposed on a major worldwide regressive phase, is assumed to be responsible for a deterioration in marine palaeoenvironments. CAMP sulfuric emissions might have been the trigger for cooling episodes and seawater acidification leading to disturbance of the surface carbonate production at the very end-Triassic.  相似文献   
188.
Stochastic simulation of categorical objects is traditionally achieved either with object-based or pixel-based methods. Whereas object-based modeling provides realistic results but raises data conditioning problems, pixel-based modeling provides exact data conditioning but may lose some features of the simulated objects such as connectivity. We suggest a hybrid dual-scale approach to combine both shape realism and strict data conditioning. The procedure combines the distance transform to a skeleton object representing coarse-scale structures, plus a classical pixel-based random field and threshold representing fine-scale features. This object-distance simulation method (ODSIM) uses a perturbed distance to objects and is particularly appropriate for modeling structures related to faults or fractures such as karsts, late dolomitized rocks, and mineralized veins. We demonstrate this method to simulate dolomite geometry and discuss strategies to apply this method more generally to simulate binary shapes.  相似文献   
189.
The current state of knowledge suggests that the Neoproterozoic snowball Earth is far from deglaciation even at 0.2 bars of CO2. Since understanding the termination of the fully ice-covered state is essential to sustain, or not, the snowball Earth theory, we used an Atmospheric General Climate Model (AGCM) to explore some key factors which could induce deglaciation. After testing the models’ sensitivity to their parameterizations of clouds, CO2 and snow, we investigated the warming effect caused by a dusty surface, associated with ash release during a mega-volcanic eruption. We found that the snow aging process, its dirtiness and the ash deposition on the snow-free ice are key factors for deglaciation. Our modelling study suggests that, under a CO2 enriched atmosphere, a dusty snowball Earth could reach the deglaciation threshold.  相似文献   
190.
Secondary flows induced by the blocking effect of a river plume on a transverse upwelling are investigated in a microtidal region of freshwater influence (ROFI). A nested version of the SYMPHONIE primitive-equation free-surface model for 3-D baroclinic coastal flows has been developed for the Rhône ROFI. The main characteristics of the model are a generalized sigma coordinate system in finite differences, using a time splitting for external and internal modes and high-order numerical advection schemes for density fields in combination with an modified turbulence closure scheme. The nesting system consists of two grids forced by the high-resolution ALADIN model atmospheric data. The coarse grid of 3 km resolution for the whole Gulf of Lions allows the forcing of the Liguro-Provençal large-scale current when the fine mesh of 1-km resolution is centred on the river mouth of the Grand Rhône. Documented field experiments from the Biodypar 3 field campaign performed during March 1999 are used for validation. Numerical results, CTD profiles and a SPOT TSM visible image are in good agreement concerning the shape and structure of the river plume. Other coastal flow features can be observed from satellite imagery. Computations of realistic situations recover these main secondary structures. Complementary process-oriented runs give an explanation of how the coastal upwelling induced by an inhomogeneous offshore wind is destabilized by the combination of the river plume and along-shelf current-blocking effects. In the end, a factor-separation analysis provides evidence that the locally non-linear effects in momentum contribute to the occurrence of secondary vortices.Responsible Editor: Phil Dyke  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号