首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5654篇
  免费   290篇
  国内免费   21篇
测绘学   194篇
大气科学   392篇
地球物理   2184篇
地质学   1935篇
海洋学   212篇
天文学   826篇
综合类   29篇
自然地理   193篇
  2022年   46篇
  2021年   104篇
  2020年   107篇
  2019年   80篇
  2018年   260篇
  2017年   244篇
  2016年   359篇
  2015年   262篇
  2014年   278篇
  2013年   362篇
  2012年   317篇
  2011年   252篇
  2010年   245篇
  2009年   257篇
  2008年   197篇
  2007年   142篇
  2006年   144篇
  2005年   122篇
  2004年   115篇
  2003年   122篇
  2002年   91篇
  2001年   92篇
  2000年   93篇
  1999年   55篇
  1998年   85篇
  1997年   71篇
  1996年   45篇
  1995年   73篇
  1994年   84篇
  1993年   48篇
  1992年   46篇
  1991年   43篇
  1990年   58篇
  1989年   43篇
  1988年   41篇
  1987年   36篇
  1986年   44篇
  1985年   46篇
  1984年   39篇
  1983年   46篇
  1982年   51篇
  1981年   44篇
  1980年   44篇
  1979年   40篇
  1978年   50篇
  1977年   41篇
  1975年   40篇
  1974年   31篇
  1973年   43篇
  1971年   39篇
排序方式: 共有5965条查询结果,搜索用时 134 毫秒
51.
Knowledge of marine geological environments in which shallow gas is accumulating is becoming increasingly important in global studies of climate change because a measurable proportion of the total methane source comes from continental margins. Previous studies have revealed that coastal environments represent important geological environments where microbial methane is being generated, is accumulating, and is being released. In the Ría de Pontevedra, at least 4.5 km2 of seafloor in the innermost part of the ría is underlain by sediments containing natural gas. Seismic interpretation contributes new findings for the definition of periods and geological environments in which the gas could have been generated, and is accumulating and released in the Ría de Pontevedra. Groundtruthing the seismic data (facies, environments) makes it possible to identify favourable geological environments for gas generation in the sedimentary infill of the Ría de Pontevedra. Sequence stratigraphy based on high-resolution seismic profiles and post-Last Glacial Maximum sea-level records makes it possible to establish the stratigraphic architecture of the ría and to define the periods in which gas could have been generated. The results of this study show that the sedimentary infill is composed of a fifth-order sequence developed since the Last Glacial Maximum. Within this sequence, gas appears to have accumulated in the Holocene deposits associated with the latest transgressive and highstand system tracts. Seismic analysis shows that gas could have been generated in different geological environments in the Ría de Pontevedra. If coastal environments at times of lower sea level were similar to those of the present, organic-rich mud deposits (deposited mainly in lakes, estuaries and floodplains) could have survived transgression and remained buried as potential gas sources in the inner part of the ría.  相似文献   
52.
Background signal of the scintillation detector routinely used for atmospheric Kr-85 counting follows fluctuations, and their connection with cosmic ray variations is searched for. A strong correlation between the 27-day moving average of sunspot numbers and the background is obtained from the 1988 data.  相似文献   
53.
The ionization equilibrium of the Fe in the solar corona for a non-Maxwellian electron distribution with an enhanced number of particles in the high-energy tail is presented. A parametric form of the distribution function is used to demonstrate the changes in the ionization equilibrium with changes in the shape of the distribution. The results over the range of temperature 105 K T 108 K for different deviations of the distribution from a Maxwellian are given in tabular form. The results can be used for specific applications in the solar corona, especially in the active corona, where deviations from the Maxwellian distribution can be significant.  相似文献   
54.
The H analysis of the development of the strong impulsive and faint gradual phase of the June 26, 1983 flare indicates the following: (1) The flare originated from two microprominences on the southeast border of NOAA 4227. Several similar events are summarized in Table II. (2) The main flare structure was a flare cone, which consisted of a bright surge-like stream, elevated above two flare ribbons (located in the cone's base). The flare cone had a height of about 40 × 103 km and lasted 4 min in H. The upper part of the cone was terminated by a very fine loop, which was bent to the west, where later a chromospheric brightening occurred at the footpoint of a flaring arch. A 300 keV burst and radio spikes were observed during the maximum flare phase. (3) The flaring arch system, with its apex at a height of about 48 × 103 km, formed the skeleton for the coronal helmet structure (Figure 7(c)). The velocity of the plasma moving along the flaring arch was between 3500 km s–1} and 6900 km s–1} during the first brightening (14:07 UT).  相似文献   
55.
An analysis of statistical expected values for transformations is performed in this study to quantify the effect of heterogeneity on spatial geological modeling and evaluations. Algebraic transformations are frequently applied to data from logging to allow for the modeling of geological properties. Transformations may be powers, products, and exponential operations which are commonly used in well-known relations (e.g., porosity-permeability transforms). The results of this study show that correct computations must account for residual transformation terms which arise due to lack of independence among heterogeneous geological properties. In the case of an exponential porosity-permeability transform, the values may be positive. This proves that a simple exponential model back-transformed from linear regression underestimates permeability. In the case of transformations involving two or more properties, residual terms may represent the contribution of heterogeneous components which occur when properties vary together, regardless of a pair-wise linear independence. A consequence of power- and product-transform models is that regression equationswithin those transformations need corrections via residual cumulants. A generalization of this result isthat transformations of multivariate spatial attributes require multiple-point random variable relations. This analysis provides practical solutions leading to a methodology for nonlinear modeling using correct back transformations in geology.  相似文献   
56.
SVLBI (space very long baseline interferometry) has some important potential applications in geodesy and geodynamics, for which one of the most difficult tasks is to precisely determine the orbit of an SVLBI satellite. This work studies several technologies that will possibly be able to determine the orbit of a space VLBI satellite. Then, according to the types and charac- teristics of the satellite and the requirements for geodetic study and the geometry of the GNSS (GPS, GALILEO) satellite to track the space VLBI satellite, the six Keplerian elements of the SVLBI satellite (TEST-SVLBI) are determined. A program is designed to analyze the coverage area of space of different altitudes by the stations of the network, with which the tracking network of TEST-SVLBI is designed. The efficiency of tracking TEST-SVLBI by the network is studied, and the results are presented.  相似文献   
57.
Spin rate estimation of sounding rockets using GPS wind-up   总被引:2,自引:1,他引:1  
Carrier phase wind-up is a well-known effect that arises from the relative rotation between a transmitting and receiving antenna. In GPS measurements at L1 frequency, this effect translates into an error of 19.029 cm per full relative rotation of antennas. Since this effect is independent of the satellite elevation for pure rotation about the antenna boresight axis, it is usually absorbed by the clock estimation in navigation algorithms. Therefore, the impact of wind-up is usually neglected for applications that do not require accuracies to the cm level like RTK. However, in receiving platforms with high rotation rate, the accumulated wind-up value can be important and actually be larger than receiver noise or even ionospheric variations. Therefore, in such scenarios, the wind-up contribution can be isolated and used as a source of information to compute the spin rate of such platforms using an appropriate combination of GPS observables. This work shows some results of a coarse, yet simple, approach to monitor the rotation angle and spin-rate of spin stabilized sounding rockets flown by DLR.  相似文献   
58.
59.
Large-scale ancient landslides of the area of more than 5 km2 and volume exceeding 200 × 106 m3 are characteristic features of the valleys incised in the northern periphery of the Crimean Mountains (Ukraine). The largely affected area is located in the outermost cuesta range of the Crimean Mountains which consists of rigid Sarmatian limestones overlying weak Middle Miocene and Upper Palaeogene deposits. A giant landslide arose in the Alma water gap as a reflection of several coincident preparatory factors such as suitable bedrock stratification, smectite-rich bedrock exposed to swelling activity, presence of faults parallel to the valley trend, and river capture event which preceded the landslide event. The occurrence of such ancient megaslides is particularly interesting in the area which is characterized by low precipitation (<500 mm/year) and weak contemporary seismicity. It probably reflects a more dynamic environment in humid phases of the Holocene; however, seismic triggering along the Mesozoic suture zone cannot be rejected. Compressional features such as gravitational folds in the central and distal parts of the landslide, which probably correlate with the whole landslide genesis or its significant reactivation, arose, according to the radiocarbon dating, during the Holocene climatic optimum in the Atlantic period. The slope deformation has been relatively quiescent since that time, except minor historic reactivization which took place in the frontal part of the landslide. We suppose that the studied landslide could be classified as a transitional type of slope deformation with some signs of spreading and translational block slides.  相似文献   
60.
Sandwiched between the Adriatic Carbonate Platform and the Dinaride Ophiolite Zone, the Bosnian Flysch forms a c. 3000 m thick, intensely folded stack of Upper Jurassic to Cretaceous mixed carbonate and siliciclastic sediments in the Dinarides. New petrographic, heavy mineral, zircon U/Pb and fission-track data as well as biostratigraphic evidence allow us to reconstruct the palaeogeology of the source areas of the Bosnian Flysch basin in late Mesozoic times. Middle Jurassic intraoceanic subduction of the Neotethys was shortly followed by exhumation of the overriding oceanic plate. Trench sedimentation was controlled by a dual sediment supply from the sub-ophiolitic high-grade metamorphic soles and from the distal continental margin of the Adriatic plate. Following obduction onto Adria, from the Jurassic–Cretaceous transition onwards a vast clastic wedge (Vranduk Formation) was developed in front of the leading edge, fed by continental basement units of Adria that experienced Early Cretaceous synsedimentary cooling, by the overlying ophiolitic thrust sheets and by redeposited elements of coeval Urgonian facies reefs grown on the thrust wedge complex. Following mid-Cretaceous deformation and thermal overprint of the Vranduk Formation, the depozone migrated further towards SW and received increasing amounts of redeposited carbonate detritus released from the Adriatic Carbonate Platform margin (Ugar Formation). Subordinate siliciclastic source components indicate changing source rocks on the upper plate, with ophiolites becoming subordinate. The zone of the continental basement previously affected by the Late Jurassic–Early Cretaceous thermal imprint has been removed; instead, the basement mostly supplied detritus with a wide range of pre-Jurassic cooling ages. However, a c. 80 Ma, largely synsedimentary cooling event is also recorded by the Ugar Formation, that contrasts the predominantly Early Cretaceous cooling of the Adriatic basement and suggests, at least locally, a fast exhumation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号