首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   147篇
  免费   7篇
  国内免费   4篇
测绘学   2篇
大气科学   23篇
地球物理   31篇
地质学   83篇
海洋学   5篇
天文学   12篇
自然地理   2篇
  2022年   1篇
  2021年   2篇
  2020年   4篇
  2019年   2篇
  2018年   6篇
  2016年   6篇
  2015年   4篇
  2014年   7篇
  2013年   11篇
  2012年   10篇
  2011年   9篇
  2010年   7篇
  2009年   15篇
  2008年   8篇
  2007年   8篇
  2006年   15篇
  2005年   4篇
  2004年   5篇
  2003年   2篇
  2002年   3篇
  2001年   5篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   3篇
  1994年   3篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1980年   1篇
  1979年   1篇
  1969年   1篇
  1965年   1篇
  1964年   1篇
  1962年   1篇
排序方式: 共有158条查询结果,搜索用时 62 毫秒
81.
Generation of granitic melt is believed to occur predominantly by melting through the breakdown of hydrous minerals. However, melting due to the influx of H2O has been recognized in anatectic amphibolite facies tonalitic grey gneisses, metagreywackes and low-P metapelites, and has consequently been proposed as an alternative mechanism for the generation of granitic melt. Melting induced by H2O addition is recognized from voluminous melt production at relatively low temperature, where hydrous minerals are stable and anhydrous minerals are preferentially consumed during melting. Mineral equilibrium modelling to determine the PT conditions, melt volumes, melting reactions and viable H2O sources reveals that the process is not restricted to specific compositions or PT conditions, although lower pressure and lithologies with a low hydrous mineral content are more favourable. Melting reactions in all lithologies primarily consume quartz and feldspars to yield 5–6 mol.% melt for each mol.% of H2O added. remains constant at ~0.70 to 0.77 during progressive melting as long as alkali feldspar is present. Once alkali feldspar is exhausted, plagioclase becomes the main reactant, producing more tonalitic melt compositions with gradually higher . Our results demonstrate that, at the site of melting, melting is driven by diffusion of H2O into the target rock along chemical potential gradients, rather than the advective flow of a mechanically distinct water-rich fluid phase. Melting will initiate and proceed as long as a gradient exists between the H2O source and target lithology. Our calculations show that an ordinary magma, such as an I-type magma with typical H2O content, has a high enough to be a viable H2O source, allowing diffusive H2O-fluxed melting to produce melt proportions and fertility comparable to that of dehydration melting. However, high degrees of partial melting require a considerable amount of H2O, which necessitates a continuously advecting H2O source such as a magma conduit or melt-bearing shear zone. A magmatic H2O source at emplacement level will undergo a similar amount of crystallization as the melt fraction produced in the target rock such that there will be no net melt production. Considering that shear-zone hosted magma conduits are localized features, diffusive H2O-fluxed melting is likely to only be viable in a small fraction of the anatectic orogenic crust. Although it may play an important role in locally raising melt volumes and modifying magma chemistry through mingling and hybridization, it does not appear to, of itself, be able to generate significant volumes of granitic melt.  相似文献   
82.
Competition between the common toad Bufo bufo (L.) and the green toad Bufo viridisLaurenti was studied in an experimental design. Mixed and single-species groups of 40 larvae were reared in plastic tanks (water volume 411). Growth parameters such as body length, total length, body mass and developmental stage according to Gosner (1960) were measured weekly until metamorphic climax and analyzed by regression analysis. Body condition index was calculated. Tadpoles of B. bufo reached metamorphosis at the same time in mixed and single-species treatments. Larvae and toadlets were insignificantly larger in single-species groups, weighed more and had a higher body condition index than in mixed species designs. In B. viridis the larval period was six days shorter in mixed groups; tadpoles and toadlets were smaller but had a higher body condition index than in the single-species treatment. These results indicate high intraspecific competition in B. viridis and competitive inferiority of B. bufo to B. viridis under the experimental conditions.  相似文献   
83.
基于透射电镜的香肠构造流变计研究   总被引:1,自引:0,他引:1  
采用透射电镜(TEM)对采自奥地利东阿尔卑斯和北京西山的香肠构造中的香肠体和相应基质的样品进行了超微构造分析。结果表明细粒基质中的位错密度较粗颗粒香肠体中的位错密度明显低很多。故认为香肠体的变形机制以位错蠕变为主,而基质的变形机制则以扩散蠕变为主。这从一个侧面为香肠构造流变计的这一假设提供了超微观研究的依据。  相似文献   
84.
40Ar/39Ar dating and estimates of regional metamorphic PT conditions were carried out on the basement rocks of the Eastern Kunlun Mountains, Western China. Samples from the Jinshuikou, Xiaomiao, Kuhai, Wanbaogou, and Nachitai groups revealed distinct metamorphic events and four age groups. The age group in the range from 363 to 439 Ma is interpreted to represent cooling after Middle Silurian–Late Devonian granulite(?) and amphibolite facies metamorphism, which is dominated by low–middle pressure/high temperature conditions. This tectono-thermal event is related to the closure of an oceanic basin or marginal sea. An age group of 212–242 Ma represents cooling after Triassic metamorphic overprint, which is probably associated with magmatic intrusions. This thermal event, together with the Permo-Triassic ophiolite zone along the South Kunlun Fault, relates to the closure of a major ocean (between India and Eurasia) and the eventual N-ward accretion of the Qiangtang block in Permo-Triassic times. The significance of the age group of 104–172 Ma may be related to the ductile deformation along the Xidatan fault due to the northward-directed accretion of the Lhasa block. Biotites from Nachitai record a partial isotopic resetting at ca. 32 Ma that is interpreted to represent a late-stage exhumation caused by further crustal shortening.  相似文献   
85.
A suite of metasomatised xenoliths from the Letlhakane kimberlite (Botswana) forms a metasomatic sequence from garnet peridotite to garnet phlogopite peridotite to phlogopite peridotite. Before the modal metasomatism, most of the Letlhakane xenoliths were depleted harzburgites that had been subjected to an earlier cryptic metasomatic event. Modal phlogopite and clinopyroxene - Cr-spinel increase at the expense of garnet and orthopyroxene with increasing degrees of metasomatism. The most metasomatised xenolith is a wehrlite. With progressive modal metasomatism, the clinopyroxene becomes enriched in Sr, Sc and the LREE, orthopyroxene becomes depleted in Ca and Ni, but enriched in Al and Mn, and olivine becomes depleted in Al and V. Garnet chemical composition largely remains unchanged. The garnet replacement reaction seen in most xenoliths allows the measurement of the flux of trace elements through detailed modal analysis of the pseudomorphs. Mass balance calculations show that the modally metasomatised rocks became enriched in incompatible elements such as Sr, Na, K, the LREE and the HFSE (Ti, Zr and Nb). Major elements (Al, Cr and Fe) and garnet-compatible trace elements (V, Y, Sc, and the HREE) were removed during this metasomatic process. The modal metasomatism caused a strong depletion in Al, and the results challenge previous suggestions that this metasomatic process merely occurred within an Al-poor environment. The data suggest that the xenoliths represent the mantle wallrock adjacent to a major conduit for an alkaline basic silicate melt (with high contents of volatile and incompatible elements). The volatile and incompatible element-enriched component of this melt percolated into the wallrock along a strong temperature gradient and caused the observed range of metasomatism.  相似文献   
86.
A new feldspar relative TL dating method is proposed that enables dating of pre-Weichselian loess older than 130 ka, by applying the additive γ dose technique and the Mejdahl's exponential extrapolation to alkali feldspar coarse grains. The method is applied to loess deposits from various reference loessic sections of NW Europe. Our relative TL age estimates are consistent with the information provided by the regional stratigraphy; furthermore, they lead to a clear separation of the pre-Weichselian periods of loess deposition in the time period 130 ka–300 ka.  相似文献   
87.
Depth variable vertical eddy diffusion coefficients for heat (K z) were calculated from continuously measured temperature profiles in Überlinger See (western part of Lake Constance). The temperatures were averaged over vertical intervals of 10 m yielding 14 discrete values (maximum depth of Überlinger See: 147 m). A linear fit from 10 June to 29 September 1987 was used to smooth the significant temperature fluctuations caused by internal seiches of Lake Constance.Assuming horizontal homogeneity for the smoothed data the Gradient-Flux-Method was applied to compute vertical diffusion coefficientsK z at different depths using the depth variable volumes and surfaces of the 14 layers. The resulting mean diffusion coefficients for the period from June to September are 0.04 cm2/s near the thermocline and up to 0.8 cm2/s in deeper strata (accuracy: ± 50%). It is shown that horizontal mixing between Überlinger See and Obersee (main lake) alters the computation ofK z by less than 50%.A relationship betweenK z and stability (Brunt-Väisälä) frequencyN is found which corresponds well to the theory of internal wave induced turbulence.Combining the diffusion coefficients with measured phosphorus profiles, a phosphorus flux from the hypolimnion to the epilimnion of (0.7 ± 0.4) mg P m–2 d–1 was calculated, corresponding to about 20% of the average external loading per area of Lake Constance in 1986.  相似文献   
88.
Vertical mixing in Überlingersee is studied by releasing sulfur hexafluoride (SF6) as a tracer at a central hypolimnic depth of 60 m and measuring its subsequent vertical dispersion over a period of three months. The experiment started with a streaky tracer injection of 1 liter gaseous SF6 (STP) in August 1990. At that time the lake showed a typical strong summer stratification which in a weakened form lasts until November. From the SF6 profiles of fifteen surveys at three sampling sites vertical diffusivitiesK z are calculated compensating internal seiche displacement and horizontal tracer loss. Except of the bottom region no sampling site or time period is marked by significant differences in the hypolimnicK z profile. So vertical mixing in the whole Überlingersee is described by mean diffusivities decreasing from 1.7 cm2/s at 120 m depth to 0.4 cm2/s in 30 m. The minimal value of 0.3 cm2/s in the thermocline region at 20 m depth is only based on observations in autumn. For a strong summer stratification it is certainly lower. The gradient-flux-method for heat was applied to compute a meanK z (T) profile from continuously measured temperature profiles. Significant differences resulting from the two tracers showed, that theK z (T) values are underestimated by up to a factor of 5 if cooling by lateral exchange is neglected. Particularly, internal seiche pumping of colder water from the adjacent Lake Obersee over the separating sill of Mainau into the deep Überlingersee basin is observed in 1990 from August onward, obviously controlling the heat budget below the sill level.  相似文献   
89.
Many dikes of the Tertiary Breiddalur dike swarm in Reydarfjördur have a great lateral extent but are vertically (upward and/or downward) discontinuous. Field relationships indicate that they are not the feeders of the lava pile they intrude. Their characteristics can be best interpreted as them constituting the fossil expression of lateral magma emplacement analogous to that occurring in the actively spreading Krafla volcanic center of the neovolcanic zone. Average dike thickness increases clearly with depth and the thickness versus depth relationship is different from that described for other Tertiary dike swarms in eastern Iceland. It is suggested that dikes represent the extent of finite spreading which at higher levels in the crust is expressed by fissures and other extensional structures.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号