首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   405篇
  免费   22篇
  国内免费   2篇
测绘学   4篇
大气科学   52篇
地球物理   88篇
地质学   156篇
海洋学   32篇
天文学   43篇
综合类   1篇
自然地理   53篇
  2022年   2篇
  2021年   4篇
  2020年   10篇
  2019年   11篇
  2018年   18篇
  2017年   13篇
  2016年   14篇
  2015年   11篇
  2014年   15篇
  2013年   37篇
  2012年   19篇
  2011年   29篇
  2010年   29篇
  2009年   43篇
  2008年   30篇
  2007年   26篇
  2006年   19篇
  2005年   8篇
  2004年   4篇
  2003年   12篇
  2002年   8篇
  2001年   5篇
  2000年   5篇
  1999年   5篇
  1998年   3篇
  1997年   3篇
  1996年   3篇
  1995年   4篇
  1994年   3篇
  1993年   5篇
  1992年   5篇
  1991年   6篇
  1990年   4篇
  1989年   4篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
排序方式: 共有429条查询结果,搜索用时 31 毫秒
31.
Chloride and hydrosulfide are the principal ligands assumed to govern transport of copper in hydrothermal fluids. Existing solubility experiments suggest that Cu(I)-hydrosulfide complexes are dominant compared to chloride complexes at low salinities in alkaline solutions (H2S(aq)/HS pH buffer), and may be important in transporting Cu in low density magmatic vapors, potentially controlling the liquid-vapor partitioning of Cu. This study provides the first in situ evidence of the solubility of copper sulfides and the nature and structure of the predominant Cu species in sulfur-containing fluids at temperatures up to 592 °C and pressures of 180-600 bar. XANES and EXAFS data show that at elevated T (?200 °C), Cu solubility occurs via a linear Cu complex. At 428 °C in alkaline solutions, Cu is coordinated by two sulfur atoms in a distorted linear coordination (angle ∼150-160°). This geometry is consistent with the species predicted by earlier solubility studies. In addition, in situ measurements of the solubility of chalcocite in 2 m NaHS solutions performed in this study are in remarkably good agreement with the solubilities calculated using available thermodynamic data for Cu(I)-hydrosulfide complexes, also supporting the interpretation of speciation in these studies and validating the extrapolation of low-T thermodynamic properties for to high P-T. Data on phase separation for the 2 m NaHS solution show that while significant amounts of copper can be partitioned into the vapor phase, there is no indication for preferential partitioning of Cu into the vapor. This is consistent with recent partitioning experiments conducted in autoclaves by Pokrovski et al. (2008a) and Simon et al. (2006). XANES data suggest that the species present in the low density phase is very similar to that present in the high density liquid, i.e., , although Cu(HS)(H2S)0 cannot be excluded on the basis of XAS data.  相似文献   
32.
We demonstrate that Pliocene to Early Quaternary sedimentary formations in Baja California Sur (Mexico) were deposited syn-tectonically over a major detachment associated with the exhumation of Mesozoic crust. The detachment dips to the ENE and is associated with E–W stretching. This large extensional structure strikes almost parallel to the general trend of the Gulf of California and extension is oblique to the East-Pacific seafloor-spreading direction. Crustal-scale stretching in this area was still active after the beginning of seafloor spreading c.  3.6 Ma ago. The detachment is capped by Late Pleistocene–Holocene alluvial sediments the deposition of which seems to be partly syn-tectonic and controlled by minor stretching subparallel to the present-day North American–Pacific kinematic vector. We discuss the implications of our observations on strain partitioning during opening of the California Gulf as well as on the structure of the Gulf of California margin.  相似文献   
33.
We review the ideas behind the pattern scaling technique, and focus on its value and limitations given its use for impact assessment and within integrated assessment models. We present estimates of patterns for temperature and precipitation change from the latest transient simulations available from the Coupled Model Inter-comparison Project Phase 5 (CMIP5), focusing on multi-model mean patterns, and characterizing the sources of variability of these patterns across models and scenarios. The patterns are compared to those obtained from the previous set of experiments, under CMIP3. We estimate the significance of the emerging differences between CMIP3 and CMIP5 results through a bootstrap exercise, while also taking into account the fundamental differences in scenario and model ensemble composition. All in all, the robustness of the geographical features in patterns of temperature and precipitation, when computed as multi-model means, is confirmed by this comparison. The intensity of the change (in both the warmer and cooler areas with respect to global temperature change, and the drier and wetter regions) is overall heightened per degree of global warming in the ensemble mean of the new simulations. The presence of stabilized scenarios in the new set of simulations allows investigation of the performance of the technique once the system has gotten close to equilibrium. Overall, the well established validity of the technique in approximating the forced signal of change under increasing concentrations of greenhouse gases is confirmed.  相似文献   
34.
Combining time–amplitude and time–frequency information from seismic reflection data sets of different resolutions allows the analysis of anomalous reflections from very-shallow to great subsurface depths. Thus, it can enhance the imaging of subsurface features which have a frequency-dependent reflectivity such as gas. Analysing seismic data of different resolution in the time–amplitude and time–frequency domains is a powerful method to determine hydrocarbon migration pathways from deep reservoirs to the seafloor. This interpretation method has been applied to the formerly-glaciated offshore Queen Charlotte Basin hosting several seafloor pockmarks and mounds associated with the leakage of underlying hydrocarbon reservoirs. Low-frequency shadows observed in the time–frequency domain provide evidence of different resolutions that several anomalous reflection amplitudes may be attributed to the occurrence of gas. The seismic imagery shows that gas uses a fault to migrate from deep reservoirs included in Upper Mesozoic strata towards secondary reservoirs located along the fault plane into Neogene layers. Once gas reaches a porous cut-and-fill succession, migration changes from structurally- to stratigraphically-controlled before gas leaks through unconsolidated Quaternary sediments forming the shallow subsurface to eventually seep at the seafloor where pockmarks and carbonate mounds are formed.  相似文献   
35.
Heavy rainfall events during the fall season are causing extended damages in Mediterranean catchments. A peaks‐over‐threshold model is developed for the extreme daily areal rainfall occurrence and magnitude in fall over six catchments in Southern France. The main driver of the heavy rainfall events observed in this region is the humidity flux (FHUM) from the Mediterranean Sea. Reanalysis data are used to compute the daily FHUM during the period 1958–2008, to be included as a covariate in the model parameters. Results indicate that the introduction of FHUM as a covariate can improve the modelling of extreme areal precipitation. The seasonal average of FHUM can improve the modelling of the seasonal occurrences of heavy rainfall events, whereas daily FHUM values can improve the modelling of the events magnitudes. In addition, an ensemble of simulations produced by five different general circulation models are considered to compute FHUM in future climate with the emission scenario A1B and hence to evaluate the effect of climate change on the heavy rainfall distribution in the selected catchments. This ensemble of climate models allows the evaluation of the uncertainties in climate projections. By comparison to the reference period 1960–1990, all models project an amplification of the mean seasonal FHUM from the Mediterranean Sea for the projection period 2070–2099, on average by +22%. This increase in FHUM leads to an increase in the number of heavy rainfall events, from an average of 2.55 events during the fall season in present climate to 3.57 events projected for the period 2070–2099. However, the projected changes have limited effects on the magnitude of extreme events, with only a 5% increase in the median of the 100‐year quantiles. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
36.
As adaptation has come to the forefront in climate change discourse, research, and policy, it is crucial to consider the effects of how we interpret the concept. This paper draws attention to the need for interpretations that foster policies and institutions with the breadth and flexibility to recognize and support a wide range of locally relevant adaptation strategies. Social scientists have argued that, in practice, the standard definition of adaptation tends to prioritize economic over other values and technical over social responses, draw attention away from underlying causes of vulnerability and from the broader context in which adaptive responses take place, and exclude discussions of inequality, justice, and transformation. In this paper, we discuss an alternate understanding of adaptation, which we label “living with climate change,” that emerged from an ethnographic study of how rural residents of the U.S. Southwest understand, respond to, and plan for weather and climate in their daily lives, and we consider how it might inform efforts to develop a more comprehensive definition. The discussion brings into focus several underlying features of this lay conception of adaptation, which are crucial for understanding how adaptation actually unfolds on the ground: an ontology based on nature–society mutuality; an epistemology based on situated knowledge; practice based on performatively adjusting human activities to a dynamic biophysical and social environment; and a placed-based system of values. We suggest that these features help point the way toward a more comprehensive understanding of climate change adaptation, and one more fully informed by the understanding that we are living in the Anthropocene.  相似文献   
37.
Terminus geometry, ice margins, and surface elevations on Rabots glaciär were measured using differential GPS during summer 2011 and compared with those similarly measured in 2003. Glacier length over the eight years decreased by ~105 m corresponding to 13 m a?1, a rate consistent with ice recession over the last several decades. Measured changes in surface elevations show that between 2003 and 2011 the glacier's volume decreased by ~27.6 ± 2.6 × 106 m3, or 3.5 ± 0.3 × 106 m3 a?1. This compares favorably with an estimate of ?28.1 ± 2.6 × 106 m3 based on a mass‐balance approach. The rate of volume loss appears, however, to have significantly increased after 2003, being substantially greater than rates determined for the intervals 1959–80, 1980–89, and 1989–2003. This increase corresponds to a sustained interval of more negative summer balances. Previous work suggests that as of 2003 Rabots glaciär had not yet completed its response to a ~1°C warming that occurred c. 1900, and thus the current marked increase rate of ice loss might reflect the effect of recent, or accelerated regional warming that occurred during the last decade superimposed on its continued response to that earlier warming.  相似文献   
38.
Interannual variability of subtropical sea-surface-height (SSH) anomalies, estimated by satellite and tide-gauge data, is investigated in relation to wintertime daily North-Atlantic weather regimes. Sea-level anomalies can be viewed as proxies for the subtropical gyre intensity because of the intrinsic baroclinic structure of the circulation. Our results show that the strongest correlation between SSH and weather regimes is found with the so-called Atlantic-Ridge (AR) while no significant values are obtained for the other regimes, including those related to the North Atlantic Oscillation (NAO), known as the primary actor of the Atlantic dynamics. Wintertime AR events are characterized by anticyclonic wind anomalies off Europe leading to a northward shift of the climatological wind-stress curl. The latter affects subtropical SSH annual variability by altered Sverdrup balance and ocean Rossby wave dynamics propagating westward from the African coast towards the Caribbean. The use of a simple linear planetary geostrophic model allows to quantify those effects and confirms the primary importance of the winter season to explain the largest part of SSH interannual variability in the Atlantic subtropical gyre. Our results open new perspectives in the comprehension of North-Atlantic Ocean variability emphasizing the role of AR as a driver of interannual variability at least of comparable importance to NAO.  相似文献   
39.
Minimizing the future impacts of climate change requires reducing the greenhouse gas (GHG) load in the atmosphere. Anthropogenic emissions include many types of GHG’s as well as particulates such as black carbon and sulfate aerosols, each of which has a different effect on the atmosphere, and a different atmospheric lifetime. Several recent studies have advocated for the importance of short timescales when comparing the climate impact of different climate pollutants, placing a high relative value on short-lived pollutants, such as methane (CH4) and black carbon (BC) versus carbon dioxide (CO2). These studies have generated confusion over how to value changes in temperature that occur over short versus long timescales. We show the temperature changes that result from exchanging CO2 for CH4 using a variety of commonly suggested metrics to illustrate the trade-offs involved in potential carbon trading mechanisms that place a high value on CH4 emissions. Reducing CH4 emissions today would lead to a climate cooling of approximately ~0.5 °C, but this value will not change greatly if we delay reducing CH4 emissions by years or decades. This is not true for CO2, for which the climate is influenced by cumulative emissions. Any delay in reducing CO2 emissions is likely to lead to higher cumulative emissions, and more warming. The exact warming resulting from this delay depends on the trajectory of future CO2 emissions but using one business-as usual-projection we estimate an increase of 3/4 °C for every 15-year delay in CO2 mitigation. Overvaluing the influence of CH4 emissions on climate could easily result in our “locking” the earth into a warmer temperature trajectory, one that is temporarily masked by the short-term cooling effects of the CH4 reductions, but then persists for many generations.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号