首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3447篇
  免费   115篇
  国内免费   17篇
测绘学   91篇
大气科学   289篇
地球物理   759篇
地质学   951篇
海洋学   360篇
天文学   806篇
综合类   1篇
自然地理   322篇
  2021年   20篇
  2020年   32篇
  2019年   41篇
  2018年   53篇
  2017年   40篇
  2016年   75篇
  2015年   57篇
  2014年   71篇
  2013年   179篇
  2012年   85篇
  2011年   146篇
  2010年   109篇
  2009年   179篇
  2008年   126篇
  2007年   135篇
  2006年   138篇
  2005年   122篇
  2004年   122篇
  2003年   110篇
  2002年   103篇
  2001年   94篇
  2000年   95篇
  1999年   76篇
  1998年   88篇
  1997年   57篇
  1996年   50篇
  1995年   53篇
  1994年   60篇
  1993年   44篇
  1992年   52篇
  1991年   43篇
  1990年   45篇
  1989年   42篇
  1988年   30篇
  1987年   52篇
  1986年   39篇
  1985年   62篇
  1984年   61篇
  1983年   66篇
  1982年   60篇
  1981年   59篇
  1980年   54篇
  1979年   38篇
  1978年   35篇
  1977年   46篇
  1976年   31篇
  1975年   39篇
  1974年   17篇
  1973年   25篇
  1972年   20篇
排序方式: 共有3579条查询结果,搜索用时 31 毫秒
991.
Discrete hollows in the bar tops of the South Saskatchewan River are described that form a newly-recognized morphological element of sandy braided rivers. These bar-top hollows, which are up to 1.7 m deep and may extend for 10–30 m down and across flow, have a circular to ovoid planform and are shown, through use of ground penetrating radar, to be filled by a series of distinct, often angle-of-repose, foresets. The hollows form by both erosion and bar-top deposition and may be generated by bar-tail accretion, cross-bar channel cutoff and subsequent fill or lateral accretion at the bar-head. Bar-top hollows occur in the upper part of the bar depositional sequence and may thus prove useful indicators for braid bar reconstruction in ancient sediments, and should not be confused with channel scour.  相似文献   
992.
993.
The 1100-year-old Acheron rock avalanche deposit lies in an active tectonic setting in Canterbury, New Zealand, and has a volume of ten million cubic metres and a runout distance 3.5 km. The deposit comprises intensely fragmented greywacke rock, and the processes of intense rock fragmentation during runout are postulated to have generated an isotropic dispersive stress. Dynamic simulation shows that the runout can be explained as a flow of dry granular material with a normal coefficient of friction, if the presence of an isotropic dispersive stress within the moving rock debris throughout the runout is assumed. The dispersive stress distribution required to model the rock avalanche runout and match velocities calculated from run-up traces is closely similar to that used to simulate the runout of the much larger Falling Mountain rock avalanche in a similar lithologic and tectonic setting. Both events thus behaved in a fundamentally similar fashion.  相似文献   
994.
The monoaromatic and total aromatic hydrocarbon fractions of two pairs of undegraded and moderately biodegraded crude oils from the Santa Maria basin (California) and the Vienna basin (Austria), all dominated by unresolved complex mixtures, were studied regarding their composition and toxicity towards the feeding rate of the marine mussel Mytilus edulis. Total aromatic and monoaromatic hydrocarbon fractions from sulphur-rich Monterey Formation crude oils were slightly more toxic than the fractions isolated from sulphur-lean Vienna basin oils. The ecotoxicity tests did not show any significant differences in toxicity of aromatic compounds from undegraded or in-reservoir biodegraded crude oils from the same oilfield although some differences in composition were observed. Organic sulphur compounds are suspected to cause the slightly higher toxicity of the aromatic hydrocarbon fractions from the Monterey oils.  相似文献   
995.
This study aims to demonstrate the potential of a process-based regional ecosystem model, LPJ-GUESS, driven by climate scenarios generated by a regional climate model system (RCM) to generate predictions useful for assessing effects of climatic and CO2 change on the key ecosystem services of carbon uptake and storage. Scenarios compatible with the A2 and B2 greenhouse gas emission scenarios of the Special Report on Emission Scenarios (SRES) and with boundary conditions from two general circulation models (GCMs) – HadAM3H and ECHAM4/OPYC3 – were used in simulations to explore changes in tree species distributions, vegetation structure, productivity and ecosystem carbon stocks for the late 21st Century, thus accommodating a proportion of the GCM-based and emissions-based uncertainty in future climate development. The simulations represented in this study were of the potential natural vegetation ignoring direct anthropogenic effects. Results suggest that shifts in climatic zones may lead to changes in species distribution and community composition among seven major tree species of natural Swedish forests. All four climate scenarios were associated with an extension of the boreal forest treeline with respect to altitude and latitude. In the boreal and boreo-nemoral zones, the dominance of Norway spruce and to a lesser extent Scots pine was reduced in favour of deciduous broadleaved tree species. The model also predicted substantial increases in vegetation net primary productivity (NPP), especially in central Sweden. Expansion of forest cover and increased local biomass enhanced the net carbon sink over central and northern Sweden, despite increased carbon release through decomposition processes in the soil. In southern Sweden, reduced growing season soil moisture levels counterbalanced the positive effects of a longer growing season and increased carbon supply on NPP, with the result that many areas were converted from a sink to a source of carbon by the late 21st century. The economy-oriented A2 emission scenario would lead to higher NPP and stronger carbon sinks according to the simulations than the environment-oriented B2 scenario.  相似文献   
996.
Atomic weapons testing at the Nevada Test Site has introduced many tracers for quantifying subsurface hydrologic transport processes in arid climates. In 1975, groundwater adjacent to the Cambric test, conducted beneath Frenchman Flat 10 years earlier, was pumped steadily for 16 years to elicit information on the migration of residual radioactivity through the saturated zone. Radionuclides in the pumping well effluent, including tritium, 14C, 36Cl, and 85Kr, were extensively monitored prior to its discharge in an unlined ditch, where approximately a third of the flow infiltrated over a distance of 1 km. Radionuclide infiltration through a 220-m thick vadose zone created a second, and rather unique long-term field experiment. Effluent data have been utilized in conjunction with geologic data, new radionuclide measurements, isotopic age-dating estimates, and vadose zone flow and transport models to better understand the movement of radionuclides between the ditch, the water table and a nearby groundwater monitoring well. Detection of tritium in the monitoring well occurred approximately 16 years after its initial discharge into the ditch. Modeling and tritium age dating have suggested 3–5 years of this 16-year transit time occurred solely in the vadose zone. They also suggest considerable recirculation of the pumping well discharge back into the original pumping well. Notably, there have been no observations of 14C or 85Kr in the monitoring well, suggesting their preferential retention or volatilization during transit to the water table.  相似文献   
997.
A miniaturized, lightweight and low-cost UV correlation spectrometer, the FLYSPEC, has been developed as an alternative for the COSPEC, which has long been the mainstay for monitoring volcanic sulfur dioxide fluxes. Field experiments have been conducted with the FLYSPEC at diverse volcanic systems, including Masaya (Nicaragua), Poás (Costa Rica), Stromboli, Etna and Vulcano (Italy), Villarica (Chile) and Kilauea (USA). We present here those validation measurements that were made simultaneously with COSPEC at Kilauea between March 2002 and February 2003. These experiments, with source emission rates that ranged from 95 to 1,560 t d−1, showed statistically identical results from both instruments. SO2 path-concentrations ranged from 0 to >1,000 ppm-m with average correlation coefficients greater than r 2=0.946. The small size and low cost create the opportunity for FLYSPEC to be used in novel deployment modes that have the potential to revolutionize the manner in which volcanic and industrial monitoring is performed.  相似文献   
998.
999.
CO2 Mitigation by Agriculture: An Overview   总被引:6,自引:0,他引:6  
Agriculture currently contributes significantly to the increase of CO2 in the atmosphere, primarily through the conversion of native ecosystems to agricultural uses in the tropics. Yet there are major opportunities for mitigation of CO2 and other greenhouse gas emissions through changes in the use and management of agricultural lands. Agricultural mitigation options can be broadly divided into two categories: (I) strategies to maintain and increase stocks of organic C in soils (and biomass), and (ii) reductions in fossil C consumption, including reduced emissions by the agricultural sector itself and through agricultural production of biofuels to substitute for fossil fuels.Reducing the conversion of new land to agriculture in the tropics could substantially reduce CO2 emissions, but this option faces several difficult issues including population increase, land tenure and other socio-political factors in developing countries. The most significant opportunities for reducing tropical land conversions are in the humid tropics and in tropical wetlands. An important linkage is to improve the productivity and sustainability of existing agricultural lands in these regions.Globally, we estimate potential agricultural CO2 mitigation through soil C sequestration to be 0.4-0.9 Pg C y-1, through better management of existing agricultural soils, restoration of degraded lands, permanent "set-asides" of surplus agricultural lands in temperate developed countries and restoration of 10-20% of former wetlands now being used for agriculture. However, soils have a finite capacity to store additional C and therefore any increases in C stocks following changes in management would be largely realized within 50-100 years.Mitigation potential through reducing direct agricultural emissions is modest, 0.01-0.05 Pg C y-1. However, the potential to offset fossil C consumption through the use of biofuels produced by agriculture is substantial, 0.5-1.6 Pg C y-1, mainly through the production of dedicated biofuel crops with a smaller contribution (0.2-0.3 Pg C y-1) from crop residues.Many agricultural mitigation options represent "win-win" situations, in that there are important side benefits, in addition to CO2 mitigation, that could be achieved, e.g. improved soil fertility with higher soil organic matter, protection of lands poorly suited for permanent agriculture, cost saving for fossil fuel inputs and diversification of agricultural production (e.g. biofuels). However, the needs for global food production and farmer/societal acceptability suggest that mitigation technologies should conform to: (I) the enhancement of agricultural production levels in parts of the world where food production and population demand are in delicate balance and (ii) the accrual of additional benefits to the farmer (e.g., reduced labor, reduced or more efficient use of inputs) and society at large.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号