首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   424篇
  免费   13篇
  国内免费   12篇
测绘学   11篇
大气科学   41篇
地球物理   114篇
地质学   117篇
海洋学   100篇
天文学   36篇
综合类   4篇
自然地理   26篇
  2023年   2篇
  2021年   7篇
  2020年   8篇
  2019年   12篇
  2018年   9篇
  2017年   17篇
  2016年   17篇
  2015年   12篇
  2014年   17篇
  2013年   14篇
  2012年   15篇
  2011年   24篇
  2010年   24篇
  2009年   18篇
  2008年   15篇
  2007年   19篇
  2006年   16篇
  2005年   23篇
  2004年   9篇
  2003年   18篇
  2002年   9篇
  2001年   16篇
  2000年   10篇
  1999年   5篇
  1998年   11篇
  1997年   9篇
  1996年   11篇
  1995年   6篇
  1993年   6篇
  1992年   4篇
  1991年   4篇
  1990年   4篇
  1989年   3篇
  1988年   4篇
  1987年   4篇
  1985年   5篇
  1984年   2篇
  1983年   2篇
  1982年   4篇
  1981年   3篇
  1980年   3篇
  1979年   6篇
  1978年   5篇
  1977年   2篇
  1975年   2篇
  1974年   3篇
  1973年   2篇
  1971年   2篇
  1962年   1篇
  1955年   1篇
排序方式: 共有449条查询结果,搜索用时 15 毫秒
391.
High inside corners at ridge-transform intersections   总被引:1,自引:0,他引:1  
A large topographic high commonly occurs near the intersection of a rifted spreading center and a transform fault. The high occurs at the inside of the 90° bend in the plate boundary, and is called the high inside corner, while the area across the spreading center, the outside corner, is often anomalously low. To better understand the origin of this topographic asymmetry, we examine topographic maps of 53 ridge-transform intersections. We conclude the following: (1) High inside corners occur at 41 out of 42 ridge-transform intersections at slow spreading ridges, and thus should be considered characteristic and persistent features of rifted slow spreading ridges. They are conspicuously absent at fast spreading ridges or at spreading centers that lack a rift valley. (2) High inside corners occur wherever an axial rift valley is present, and an approximate 1:1 correlation exists between the relief of the rift valley and the magnitude of the asymmetry. (3) Large high inside corners occur at both long and short transform offsets. (4) High inside corners at long offsets decay off-axis faster than predicted by the square root of age cooling model, precluding a thermalisostatic origin, but consistent with dynamic or flexural uplift models.These observations support the existing hypothesis that the asymmetry is due to the contrast in lithospheric coupling that occurs in the active transform versus the inactive fracture zone. Active faulting in the transform breaks the lithosphere along a high angle fault, permitting vertical movement of the inside corner block, whereas the inactive fracture zone forms a weld that couples the outside corner to the adjacent block, preventing it from rising. Large asymmetry at very short transform offsets appears to be caused by the added effect of a second uplift mechanism. Young lithosphere in the rift valley couples to the older plate, and when it leaves the rift valley it lifts the older plate with it. At very short offsets, this coupled uplift acts upon the high inside corner; at long offsets, it may upwarp the older plate or its expression may be muted.  相似文献   
392.
Results are presented from a high precision geophysical profile made at an altitude of about 100 m above the sea floor with the Deep Two instrument package, crossing the Red Sea at 17°30N. The emphasis is on the analysis and interpretation of the magnetic field, including an inversion which removes the distortions due to bathymetry and the orientation with respect to the earth's main field vector. The spreading rates are determined precisely and found to be highly asymmetric: only 5 mm yr-1 to the east and up to 10 mm yr-1 to the west. We conclude that the axis of spreading is located on a volcanic ridge, rather than on the axial graben, based on the presence of a zone of high magnetization. The magnetization high (40 Am-1) is about twice as great as found on the Mid-Atlantic Ridge with the same instrument and analysis. The quality of the recording of the magnetic anomalies in the oceanic crust is much greater than expected for such a low spreading rate.  相似文献   
393.
394.
Six Deep-Tow magnetic profiles across the axis of the East Pacific Rise [EPR] in two small areas between 19°25 and 20°10S were collected during the 1983 Protea 1 cruise of the R/V Melville. These near-bottom profiles are of extremely high resolution allowing the interpretation of very short wavelength features. We have inverted the magnetic field data to determine the rock magnetization distribution near the axis of this ultrafast speading center (162 mm yr-1). The solutions reveal large amplitude (up to 35 A m-1) short wavelength (1–3 km) variations in magnetization. Specifically all crossings show a narrow (0.5 to 1.5 km) low in magnetization superimposed on a broader (2.5 to 4 km) high directly over the ridge axis. Four profiles in the northern area (19°25 to 19°33S) also show symmetrical near-axis (within 4 km) lows which are remarkably continuous along strike. Explanations for the short-wavelength variations are discussed which fall into the following categories: (1) variations in the thickness of the magnetized layer, (2) variations in rock chemistry (e.g. alteration due to hydrothermal activity), and (3) paleofield intensity variations. None of the mechanisms discussed alone adequately explain the observed phenomena in the study area or on a world-wide scale. Further sampling and high resolution surveying will be required in order to accurately determine the relative importance of the mechanisms discussed.  相似文献   
395.
Field studies have established the concentrations of naphthalenes in bay sediments and water in the vicinity of an oil separator platform and their effects on the benthic fauna. Fifteen stations were occupied monthly, from July, 1974 to December, 1975, along three transects extending from the separator platform outfall outwards for a distance of 4·0 to 5·6 km. A lesser number of stations were occupied from April, 1974 to June, 1974. Bottom sediments at each station were analysed for total naphthalenes content and for number of species and individuals. All stations were located in 2 to 3 m of water. The outfall was located 1 m off the bay bottom.There was a definite correlation between sediment naphthalenes concentration and number of species and individuals. As expected, the first station, located 15 m from the outfall, had the highest concentration of naphthalenes of all stations sampled. The naphthalenes levels dropped sharply from the outfall to the stations located 75 m from the platform where levels were about 20–50% of those found 15 m from the outfall. Naphthalenes concentrations then decreased gradually to near background levels at stations farther out. Hydrocarbon concentrations in bottom water 15 m from the outfall were three orders of magnitude lower than those in the full strength effluent, but sediments 15 m from the outfall had hydrocarbon concentrations four times as great as in the full strength effluent. There were approximately four orders of magnitude more hydrocarbons in the sediment than in the overlying water.The bay bottom was almost completely devoid of organisms within 15 m of the effluent outfall. Stations located 150 m from the outfall had severely depressed benthic faunas but not to the extent of stations nearer the outfall. Stations located 455 m from the platform were unaffected. Both numbers of species and individuals increased with distance from the platform and reached a peak at the first station medial to the control on each transect (685 to 1675 m from the platform) and then dropped at the control station. Physical environmental factors such as temperature, salinity, water depth and sediment type were essentially the same at all stations.The temporary use of a second outfall located 275 m from the main platform outfall resulted in a rapid build up of naphthalenes in surrounding sediments which persisted for at least six months following the termination of use of the second outfall. The benthic fauna was also severely depressed in the vicinity of the second outfall. The use of multiple outfalls, located some distance apart, appears to be more harmful than the use of a single outfall.Trinity Bay, Texas, the site of this investigation, has a mean depth of 2·5 m. The bay water is highly turbid due to the presence of a high concentration of clay-sized particulate material. The brine outfall was located approximately 1 m above the bay bottom. These special conditions undoubtedly contributed significantly to the observed impact of the brine. Therefore, extrapolations from the results of this study to offshore oil production and brine disposal should be made with extreme caution.  相似文献   
396.
The intensification of upwelling front and two-cell circulation is studied numerically in a two dimensional level model. Upwelling front is set initially with longshore geostrophic flow. The uniform wind stress forces the ocean which has an infinite north-south coast line. Two-cell circulation, downwelling just inshore-side of the front and upwelling offshore-side, is induced, and the front is intensified. It is found that the intensification is occurred in the inshore-side of the front, and the intensification is basically due to the deviation from the thermal-wind balance, as is shown bySuginohara (1977). It is found that the inshore-side cell intrudes under the pycnocline. It seems to reproduce the observed two-cell circulation.  相似文献   
397.
The distribution of chlorophyll a derivatives was examined in samples collected from the subarctic North Pacific during July to September 1997. Pheophorbide a, pheophytin a and pyropheophorbide a as determined by high performance liquid chromatography (HPLC) were the major derivatives recorded. The distribution patterns of chlorophyll a and its derivatives showed a strong vertical and horizontal heterogeneity. Patches with high concentration of derivatives seemed to be associated with high concentration of chlorophyll a. A clear east-west gradient was observed in both chlorophyll a and pheophorbide a integrated from the surface to 100 m depth with significantly higher amounts of both the pigments in the Western Subarctic Gyre and in the Bering Sea than in the Alaskan Gyre. In contrast, no apparent gradient was observed in the integrated pyropheophorbide a and pheophytin a. Grazing experiments conducted with the copepod (Neocalanus cristatus) and salp (Cyclosalpa bakeri) fed on five species of phytoplankton cultures, showed a marked difference in the composition of the derivatives in their fecal pellets. Pyropheophorbide a was dominant in the copepod fecal pellet regardless of the phytoplankton species fed on. In the salp, however, pheophytin a and pheophorbide a were found in the fecal pellets, the relative concentrations varying with the algal food. Spatial heterogeneity in the distribution of the derivatives is considered to reflect local variations in dominant herbivorous processes.  相似文献   
398.
The Nereus Deep (23°N) lies in the central portion of the Red Sea, in a region which marks a transition between the nearly continuous axial rift valley of the southern Red Sea and the northern Red Sea, where a well defined axial rift is absent. The deep-tow survey and associated heat flow measurements reported here show that the Nereus Deep is a short segment of axial rift, and it is the northernmost deep where petrology, heat flow, magnetics, and morphology all indicate classic seafloor spreading. Heat flow measured in the Nereus Deep is characterized by non-linear gradients and closely-spaced variability indicative of active hydrothermal circulation associated with seafloor spreading. The two axial highs which we have mapped in Nereus differ markedly in that the southernmost appears younger or at least has had a more recent phase of volcanism. The two axial highs are offset left laterally approximately 2 km. This small offset or bend in the axial course has been labelled the Nereus shear zone, and, despite its small extent, it mimics many of the major features of small offset, slow-slipping transform faults. This shear zone may result from shear stresses associated with misalignments in succeeding volcanic episodes. The Nereus Deep appears to represent one of the earliest phases of seafloor spreading. The Red Sea seems to be opening towards the north, and the Nereus Deep is near the tip of propagation, but it is clear from this study that rift propagation in a site of initial rifting differs greatly from that observed along a well developed, fast spreading center like the East Pacific Rise.  相似文献   
399.
The tectonically active islands of the Indo-Pacific Archipelago deliver much sediment to the ocean margins. In the Gulf of Papua on the south coast of Papua New Guinea (PNG), the chemical composition of surface sediment from grab samples indicates that Fly River muds are dispersed to the north and east, where they are joined by sediment plumes from the other large rivers along the south coast of PNG. This is the likely source of terrestrial sediment on the Papuan Plateau and the northern Coral Sea Abyssal Plain. The sediment is transported through submarine troughs and canyons offshore, far to the east of the riverine inputs. Immediately south and 30–50 km offshore from the Fly and Purari deltas is a platform of algal and reef carbonate materials, containing little or no terrestrial surface sediment.  相似文献   
400.
Depth profiles of total 234Th (dissolved+particulate) were collected at Station ALOHA (22°45N, 158°00W) in the North Pacific Subtropical Gyre during 9 cruises from April 1999 to March 2000. Samples were collected and processed by a new 2 L technique that enables more detailed depth resolution then previous 234Th studies. Significant zones of particle export (234Th deficiency) and particle remineralization (234Th excess) were measured both temporally and with depth. 234Th derived particulate carbon (PC) and nitrogen (PN) fluxes were determined with steady-state and non-steady-state models and PC/234Th and PN/234Th ratios measured with both in situ pumps and free-drifting particle interceptor traps deployed at 150 m. 234Th based export estimates of 4.0±2.3 mmol C m−2 d−1 and 0.53±0.19 mmol N m−2 d−1, were approximately 60% higher than those measured in PIT style sediment traps from the same time period, 2.4±0.2 mmol C m−2 d−1 and 0.32±0.08 mmol N m−2 d−1. Most of this difference is attributable to two large export events that occurred during October and December 1999, when traps undercollected for 234Th by a factor of 2 to 4. 234Th export (ThE) ratios based on 234Th derived PC flux/14C based primary production ranged from 4% to 22% (average=8.8%). Our results confirm the recent estimates of C export by Emerson et al. (Nature 389 (1997) 951) and Sonnerup et al. (Deep-Sea Research I 46 (1999) 777) and indicate that C export from the oligotrophic ocean must be considered when discussing C sequestration in global climate change.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号