首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   241篇
  免费   14篇
  国内免费   4篇
测绘学   9篇
大气科学   18篇
地球物理   78篇
地质学   120篇
海洋学   9篇
天文学   11篇
综合类   6篇
自然地理   8篇
  2024年   2篇
  2023年   1篇
  2022年   7篇
  2021年   8篇
  2020年   12篇
  2019年   12篇
  2018年   26篇
  2017年   27篇
  2016年   20篇
  2015年   18篇
  2014年   21篇
  2013年   33篇
  2012年   12篇
  2011年   18篇
  2010年   7篇
  2009年   6篇
  2008年   5篇
  2007年   4篇
  2006年   4篇
  2005年   1篇
  2004年   3篇
  2003年   1篇
  2001年   3篇
  1998年   2篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1986年   1篇
  1980年   1篇
排序方式: 共有259条查询结果,搜索用时 906 毫秒
41.
42.
Seismic ground faulting is the greatest hazard for continuous buried pipelines.Over the years,researchers have attempted to understand pipeline behavior mostly via numerical modeling such as the finite element method.The lack of well-documented field case histories of pipeline failure from seismic ground faulting and the cost and complicated facilities needed for full-scale experimental simulation mean that a centrifuge-based method to determine the behavior of pipelines subjected to faulting is best to verify numerical approaches.This paper presents results from three centrifuge tests designed to investigate continuous buried steel pipeline behavior subjected to normal faulting.The experimental setup and procedure are described and the recorded axial and bending strains induced in a pipeline are presented and compared to those obtained via analytical methods.The influence of factors such as faulting offset,burial depth and pipe diameter on the axial and bending strains of pipes and on ground soil failure and pipeline deformation patterns are also investigated.Finally,the tensile rupture of a pipeline due to normal faulting is investigated.  相似文献   
43.
ABSTRACT

Groundwater-level time series often have a substantial number of missing values which should be taken into consideration before using them for further analysis, particularly for numerical groundwater flow modelling applications. This study aims to comprehensively compare two data-driven models, singular spectrum analysis (SSA) and multichannel spectrum analysis (MSSA), to reconstruct groundwater-level time series and impute the missing values for 25 piezometric stations in Ardabil Plain, northwest Iran. The reconstructed groundwater-level time series are assessed against the complete observed groundwater time series, while the imputed values are appraised against the artificially created gap values. The results show that both SSA and MSSA demonstrate a solid competency in imputation and reconstruction of groundwater-level data. However, depending on the spatial correlation between the piezometers, and the most suitable probability distribution function (pdf) fitted to the time series of each piezometer, the performance may vary from piezometer to piezometer.  相似文献   
44.
Résumé

Un modèle hydrologique global a été calé sur des épisodes pluvieux de durée très variable (de un à plus de dix jours). Les épisodes pris en compte sont ceux qui sont encadrés par au moins un jour sec et ne provoquant pas de déversement du barrage. L'entrée de ce modèle comprend la pluie moyenne du bassin versant et l'indice des précipitations antérieures de Kohler & Linsley. Les expressions du modèle hydrologique du début et au cours de la saison humide, selon un seuil du cumul des pluies de la saison depuis le début de l'automne, sont de la forme non linéaire polynomiale du second ordre. Le modèle s'est montré performant dans l'évaluation de la lame ruisselée malgré le faible nombre de postes pluviométriques (un) pour la taille du bassin versant de 48 km2. L'absence d'autres postes pluviométriques sur le bassin versant n'a pas permis d'étudier la précision du modèle en considérant une pluie moyenne sur le bassin versant au lieu de la pluie uniquement au site du Barrage Ghézala.

Citation Mathlouthi. M. & Lebdi, F. (2010) Modélisation de la relation pluie–ruissellement par durée d'épisode pluvieux dans un bassin du nord de la Tunisie. Hydrol. Sci. J. 55(7), 1111–1122.  相似文献   
45.
Abstract

The main objective of this study is to assess the relative contribution of the state-of-the-art topo-hydrological factor, known as height above the nearest drainage (HAND), to landslide susceptibility modellling using three novel statistical models: weights-of-evidence (WofE), index of entropy and certainty factor. In total, 12 landslide conditioning factors that affect the landslide incidence were used as input to the models in the Ziarat Watershed, Golestan Province, Iran. Landslide inventory was randomly divided into a ratio of 70:30 for training and validating the results of the models. The optimum combination of conditioning factors was identified using the principal components analysis (PCA) method. The results demonstrated that HAND is the defining factor among hydrological and topographical factors in the study area. Additionally, the WofE model had the highest prediction capability (AUPRC = 74.31%). Therefore, HAND was found to be a promising factor for landslide susceptibility mapping.  相似文献   
46.
Multivariate statistical techniques, i.e., correlation coefficient analysis, principal components analysis (PCA), and hierarchical cluster analysis (CA), were applied to the total and water-soluble concentrations of potentially hazardous metals in sediments associated with the Sarcheshmeh mine, one of the largest Oligo-Miocene porphyry copper deposits in the world. The samples were analyzed for hazardous metal concentration levels by inductively coupled plasma mass spectrometry method. Results indicate that the contaminant metals As, Cd, Cu, Mo, S, Sb, Sn, Se, Pb, and Zn were positively correlated with the total concentrations. These hazardous metals also have strong association in the PCA and CA results. Different anthropic versus natural sources of contaminant metals were distinguished by using CA method. Water-soluble fraction of hazardous metals showed that the hydro-geochemical behavior of these metals in sediments is different considerably. Elements such as Cd, Co, Cr, Cu, Fe, Mn, Ni, S, and Zn are readily water soluble from contaminated samples, especially from evaporative mineral phases, while the release of As, Mo, Sb, and Pb into the water is limited by adsorption processes. Results obtained from the application of multivariate techniques on the water-soluble fraction data set show that the hazardous metals are categorized into three groups including (1) Ni, S, Co, Cu, Cr, and Fe; (2) Se, Mn, Cd, and Zn; and (3) Sb, As, Mo, and Sn. This classification describes the hydro-geochemical behavior of hazardous metals in water–sediment environments of the Sarcheshmeh porphyry copper mine and can be used as a basis in remedial and treatment strategies.  相似文献   
47.
The Upper Triassic-Middle Jurassic sedimentary succession in the Tabas Basin, with a thickness of about 1600 m, provides a case showing geochemical property changes through the Triassic-Jurassic boundary. The studied section (Kamarmacheh Kuh) is composed of the marine Nayband Formation (Norian-Rhaetian) overlain by siliciclastic sediments of Ab-e-Haji Formation (Lower Jurassic-Aalenian). Detailed geochemical analyses were conducted on selected samples from both formations and the results were used to infer paleo-depositional conditions. Most of the studied samples contain <1 wt% TOC composed mostly of oxidized organic matter with insignificant generative potential. Extract analysis of four representative samples indicate that the rocks also contain minor amounts of preserved algal organic matter along with a secondary contribution of higher plant organic matter from the adjacent watershed. Biomarker analyses show subtle variations in the relative contribution of land plant material that are consistent with the widespread occurrence of coal seams in the upper parts of the Nayband and basal parts of the Ab-e-Haji formations. Although the samples from the Kamarmacheh Kuh Section have low source potential, the extractable hydrocarbons indicate that conditions existed that were conducive to organic matter preservation and that regions of the Tabas Basin with higher primary productivity or lower sedimentation rates may have greater potential.  相似文献   
48.
The Sarcheshmeh is one of the largest Oligo-Miocene porphyry Cu deposits in the world. Comparative hydrochemical, mineralogical and chemical fractionation associated with mining efflorescence salts and processing wastes of this mine are discussed. Hydrochemical results showed that rock waste dumps, reject wastes and old impoundments of tailings are the main sources of acid mine drainage waters (AMD) that contain potentially toxic metals such as Cd, Co, Cu, Mn, Ni and Zn as well as Al. Episodic fluxes of highly contaminated acidic waters were produced in a tailings dam over a short period of time. Secondary soluble minerals provide important controls on the quality of AMD produced, especially in old, dry tailings impoundments. Secondary sulfate minerals such as gypsum, magnesiocopiapite, hydronium jarosite, kornelite and coquimbite were found in rock waste drainages and in old weathered reject wastes. Highly soluble secondary minerals such as gypsum, eriochalcite, and bonattite are also observed in an evaporative layer on old tailings impoundments. Chemical fractionation patterns of potentially toxic elements showed that the geochemical behavior of metals is primarily controlled by the mineralogical composition of waste samples. Elements such as Co, Cr, Cu, Mn, Ni and Zn are readily released into the water soluble fraction from efflorescence salts associated with rock waste drainages, as well as from the evaporative layer of old tailings. Potentially toxic elements, such as As, Mo and Pb, are principally adsorbed or co-precipitated with amorphous and crystalline Fe oxides, but they may also be associated with oxidizing, primary sulfides and residual fractions. Following the development of the dammed tailings pond, the secondary minerals were dissolved, producing acidic waters contaminated by Al (154 mg L−1), Cu (150 mg L−1), Cd (0.31 m gL−1), Co (2.13 mg L−1), Mn (73.7 mg L−1), Ni (1.74 mg L−1), Zn (20.3 mg L−1) and Cl (1690 mg L−1). Therefore, the potential use of recycled water from the Sarcheshmenh dammed tailings pond is diminished by the presence of corrosive ions like Cl in highly acidic fluids that promote corrosion of pipes and pumps in the water recycling system.  相似文献   
49.
Burden prediction is a vital task in the production blasting. Both the excessive and insufficient burden can significantly affect the result of blasting operation. The burden which is determined by empirical models is often inaccurate and needs to be adjusted experimentally. In this paper, an attempt was made to develop an artificial neural network (ANN) in order to predict burden in the blasting operation of the Mouteh gold mine, using considering geomechanical properties of rocks as input parameters. As such here, network inputs consist of blastability index (BI), rock quality designation (RQD), unconfined compressive strength (UCS), density, and cohesive strength. To make a database (including 95 datasets), rock samples are used from Iran’s Mouteh goldmine. Trying various types of the networks, a neural network, with architecture 5-15-10-1, was found to be optimum. Superiority of ANN over regression model is proved by calculating. To compare the performance of the ANN modeling with that of multivariable regression analysis (MVRA), mean absolute error (E a), mean relative error (E r), and determination coefficient (R 2) between predicted and real values were calculated for both the models. It was observed that the ANN prediction capability is better than that of MVRA. The absolute and relative errors for the ANN model were calculated 0.05 m and 3.85%, respectively, whereas for the regression analysis, these errors were computed 0.11 m and 5.63%, respectively. Moreover, determination coefficient of the ANN model and MVRA were determined 0.987 and 0.924, respectively. Further, a sensitivity analysis shows that while BI and RQD were recognized as the most sensitive and effective parameters, cohesive strength is considered as the least sensitive input parameters on the ANN model output effective on the proposed (burden).  相似文献   
50.
Soil particle size distribution (PSD) is used to estimate some soil processes, soil moisture characteristics, and infiltration rate (IR). Prediction of infiltration rate from soil texture data requires an accurate characterization of PSD. The objective of this study was to determine more important primary particle diameters that control IR. The experiments were conducted using double-ring method with constant head of 5 cm in 15 different soils and three replications. The range of measured IR for studied soils varied from 1.6 to 30.66 cm h?1. The results indicated that the primary PSD had a significant influence on IR. In other words, most D n fractions had significant positive effect on the final IR. Among different fractions, D 30, D 40, and D 60 showed higher relationships with IR than the others. These diameters are attributed to particles with diameter of 0.05, 0.08, and 0.16 mm, respectively. The results also showed that increasing the percent of sand have intensified influence on increasing the final IR. Reversely, clay and silt contents showed negative effects on final IR. Furthermore, the CaCO3 had a meaningful effect on the IR that showed the importance of lime in arid and semiarid regions. Finally, it is revealed that the role of texture was important, especially in behavior of infiltration, runoff, and production capability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号