首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   645篇
  免费   37篇
  国内免费   1篇
测绘学   8篇
大气科学   47篇
地球物理   160篇
地质学   279篇
海洋学   65篇
天文学   71篇
自然地理   53篇
  2024年   2篇
  2023年   2篇
  2022年   2篇
  2021年   10篇
  2020年   20篇
  2019年   16篇
  2018年   17篇
  2017年   30篇
  2016年   36篇
  2015年   29篇
  2014年   27篇
  2013年   40篇
  2012年   34篇
  2011年   48篇
  2010年   39篇
  2009年   51篇
  2008年   39篇
  2007年   41篇
  2006年   30篇
  2005年   39篇
  2004年   13篇
  2003年   18篇
  2002年   19篇
  2001年   12篇
  2000年   8篇
  1999年   6篇
  1998年   3篇
  1997年   4篇
  1996年   4篇
  1994年   4篇
  1993年   3篇
  1992年   2篇
  1991年   2篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   4篇
  1984年   5篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
  1979年   1篇
  1977年   1篇
  1976年   2篇
  1975年   3篇
  1974年   2篇
  1973年   1篇
  1971年   1篇
  1970年   2篇
排序方式: 共有683条查询结果,搜索用时 31 毫秒
41.
Marie A  Vengosh A 《Ground water》2001,39(2):240-248
One of the major problems in the lower Jordan Valley is the increasing salinization (i.e., chloride content) of local ground water. The high levels of salinity limit the utilization of ground water for both domestic and agriculture applications. This joint collaborative study evaluates the sources and mechanisms for salinization in the Jericho area. We employ diagnostic geochemical fingerprinting methods to trace the potential sources of the salinity in (1) the deep confined subaquifer system (K2) of Lower Cenomanian age; (2) the upper subaquifer system (K1) of Upper Cenomanian and Turonian ages; and (3) the shallow aquifer system (Q) of Plio-Pleistocene ages. The chemical composition of the saline ground water from the two Cenomanian subaquifers (K1 and K2) point to a single saline source with Na/Cl approximately 0.5 and Br/Cl approximately 7 x 10(-3). This composition is similar to that of thermal hypersaline spring that are found along the western shore of the Dead Sea (e.g., En Gedi thermal spring). We suggest that the increasing salinity in both K1 and K2 subaquifers is derived from mixing with deep-seated brines that flow through the Rift fault system. The salinization rate depends on the discharge volume of the fresh meteoric water in the Cenomanian Aquifer. In contrast, the chemical composition of ground water from the Plio-Pleistocene Aquifer shows a wide range of Cl- (100-2000 mg/L), Na/Cl (0.4-1.0), Br/Cl (2-6 x 10(-3)), and SO4/Cl (0.01-0.4) ratios. These variations, together with the high SO4(2-), K+, and NO3- concentrations, suggest that the salinity in the shallow aquifer is derived from the combination of (1) upconing of deep brines as reflected by low Na/Cl and high Br/Cl ratios; (2) leaching of salts from the Lisan Formation within the Plio-Pleistocene Aquifer, as suggested by the high SO4(2-) concentrations; and (3) anthropogenic contamination of agriculture return flow and sewage effluents with distinctive high K+ (80 mg/L) and NO3- (80 mg/l) contents and low Br/Cl ratios (2 x 10(-3)). Our data demonstrates that the chemical composition of salinized ground water can be used to delineate the sources of salinity and hence to establish the conceptual model for explaining salinization processes.  相似文献   
42.
Geospatial technologies and digital data have developed and disseminated rapidly in conjunction with increasing computing efficiency and Internet availability. The ability to store and transmit large datasets has encouraged the development of national infrastructure datasets in geospatial formats. National datasets are used by numerous agencies for analysis and modeling purposes because these datasets are standardized and considered to be of acceptable accuracy for national scale applications. At Oak Ridge National Laboratory a population model has been developed that incorporates national schools data as one of the model inputs. This paper evaluates spatial and attribute inaccuracies present within two national school datasets, Tele Atlas North America and National Center of Education Statistics (NCES). Schools are an important component of the population model, because they are spatially dense clusters of vulnerable populations. It is therefore essential to validate the quality of school input data. Schools were also chosen since a validated schools dataset was produced in geospatial format for Philadelphia County; thereby enabling a comparison between a local dataset and the national datasets. Analyses found the national datasets are not standardized and incomplete, containing 76 to 90 percent of existing schools. The temporal accuracy of updating annual enrollment values resulted in 89 percent inaccuracy for 2003. Spatial rectification was required for 87 percent of NCES points, of which 58 percent of the errors were attributed to the geocoding process. Lastly, it was found that by combining the two national datasets, the resultant dataset provided a more useful and accurate solution.  相似文献   
43.
44.
The influence of Daphnia galeata×hyalina grazing and of infochemicals released by the daphnids on the colony size and growth rate of the colonial gelatinous green alga Sphaerocystis schroeteri (Chlorococcales) was investigated in laboratory batch experiments run for 96 h. High zooplankton grazing pressure was exerted by a final concentration of 100 daphnids L−1 in the Daphnia treatments. Infochemicals were obtained by filtration (0.2 μm) of water from D. galeata×hyalina cultures (200 ind. L−1 exposed for 24 h). This filtrate was added to the S. schroeteri cultures in two concentrations corresponding to 7 and 50 daphnids L−1, respectively. The growth rate of S. schroeteri was neither affected significantly by direct Daphnia grazing nor by the presence of Daphnia infochemicals, in comparison to the control. However, the portion of inedible S. schroeteri colonies (diameter>50 μm) increased under direct grazing pressure, whereas the Daphnia infochemicals did not influence the colony size significantly. We conclude that the shift in colony size by direct zooplankton grazing denotes an effective defence mechanism against size selective feeding for colonial gelatinous green algae. This effective defence in combination with unchanged growth rates of the larger colonies (under non-limiting nutrient and light conditions) falsifies the assumption of a trade-off between minimising grazing losses and maximising growth by optimising the colony size.  相似文献   
45.
The second field campaign of the Cloud Ice Mountain Experiment (CIME) project took place in February 1998 on the mountain Puy de Dôme in the centre of France. The content of residual aerosol particles, of H2O2 and NH3 in cloud droplets was evaluated by evaporating the drops larger than 5 μm in a Counterflow Virtual Impactor (CVI) and by measuring the residual particle concentration and the released gas content. The same trace species were studied behind a round jet impactor for the complementary interstitial aerosol particles smaller than 5 μm diameter. In a second step of experiments, the ambient supercooled cloud was converted to a mixed phase cloud by seeding the cloud with ice particles by the gas release from pressurised gas bottles. A comparison between the physical and chemical characteristics of liquid drops and ice particles allows a study of the fate of the trace constituents during the presence of ice crystals in the cloud.In the present paper, an overview is given of the CIME 98 experiment and the instrumentation deployed. The meteorological situation during the experiment was analysed with the help of a cloud scale model. The microphysics processes and the behaviour of the scavenged aerosol particles before and during seeding are analysed with the detailed microphysical model ExMix. The simulation results agreed well with the observations and confirmed the assumption that the Bergeron–Findeisen process was dominating during seeding and was influencing the partitioning of aerosol particles between drops and ice crystals. The results of the CIME 98 experiment give an insight on microphysical changes, redistribution of aerosol particles and cloud chemistry during the Bergeron–Findeisen process when acting also in natural clouds.  相似文献   
46.
47.
The methodology developed for connecting Local Vertical Datums (LVD) was applied to the Australian Height Datum (AHD) and the North American Vertical Datum (NAVD88). The geopotential values at AHD and NAVD88 were computed and the corresponding vertical offset of 974 mm with rms 51 mm was obtained between the zero reference surfaces defined by AHD and NAVD88. The solution is based on the four primary geodetic parameters, the GPS/levelling sites and the geopotential model EGM96. The Global Height System (or the Major Vertical Datum) can be defined by a geoidal geopotential value used in the solution as the reference value, or by the geopotential value of the LVD, e.g. NAVD88.  相似文献   
48.
Geopotential values W of the mean equipotential surfaces representing the mean ocean topography were computed on the basis of four years (1993 - 1996) TOPEX/POSEIDON altimeter data: W = 62 636 854.10m 2 s –2 for the Pacific (P), W = 62 636 858.20m 2 s –2 for the Atlantic (A), W = 62 636 856.28m 2s–2 for the Indian (I) Oceans. The corresponding mean separations between the ocean levels were obtained as follows: A – P = – 42 cm, I– P = – 22 cm, I – A = 20 cm, the rms errors came out at about 0.3 cm. No sea surface topography model was used in the solution.  相似文献   
49.
Concentrations of 2,3,7,8-substituted polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) were determined in 14 sediment samples collected from four sites in the Mai Po Marshes Nature Reserve (within a RAMSAR Site) and from another six sites in Victoria Harbour and along the Hong Kong coastline. Elevated levels of PCDDs, and particularly OCDD, were detectable in all samples collected from the Mai Po Marshes and five of the six sites. In contrast to PCDDs, PCDFs were mainly found in sediment samples collected from industrial areas (Kwun Tong and To Kwa Wan) in Victoria Harbour. PCDD/F levels and congener profiles in the samples from the Mai Po Marshes Nature Reserve in particular show strong similarities to those reported in studies which have attributed similar elevated PCDD concentrations to nonanthropogenic PCDD sources.  相似文献   
50.
HCl:SO2 mass ratios measured by open path Fourier transform spectroscopy (OP-FTIR) in the volcanic plume at Soufrière Hills Volcano, Montserrat, are presented for the second phase of dome building between November 1999 and November 2000. HCl:SO2 mass ratios of greater than 1 and HCl emission rates of greater than 400 t day–1 characterise periods of dome building for this volcano. The data suggest that chlorine partitions into a fluid phase as the magma decompresses and exsolves water during ascent. This is substantiated by a correlation between chlorine and water content in the melt (derived from the geochemical analysis of plagioclase melt inclusion and matrix glasses from phase I and II of dome growth). The matrix glass from the November 1999 and March 2000 domes indicate an open system degassing regime with a fluid-melt partition coefficient for chlorine of the order of 250–300. September 1997 glasses have higher chlorine contents and may indicate a switch to closed system degassing prior to explosive activity in September and October 1997. The OP-FTIR HCl time series suggests that HCl emission rate is strongly related to changes in eruption rate and we infer an emission rate of over 13.5 kt day–1 HCl during a period of high extrusion rate in September 2000. A calculation of the HCl emission rate expected for varying extrusion rates from the open-system degassing model suggests a HCl emission rate of the order of 1–4 kt day–1 is indicative of an extrusion rate of between 2 and 8 m3 s–1. Monitoring of HCl at Soufrière Hills Volcano provide a proxy for extrusion rate, with changes in ratio between HCl and SO2 occurring rapidly in the plume. Order of magnitude changes occur in HCl emission rates over the time-scale of hours to days, making these changes easy to detect during the day-to-day monitoring of the volcano. Mean water emission rates are calculated to range from 9–24 kt day–1 during dome building activity, calculated from the predicted mass ratio of H2O:HCl in the fluid at the surface and FTIR-derived HCl emission rates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号