首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   272篇
  免费   19篇
  国内免费   4篇
测绘学   3篇
大气科学   42篇
地球物理   66篇
地质学   99篇
海洋学   23篇
天文学   38篇
自然地理   24篇
  2022年   3篇
  2021年   9篇
  2020年   6篇
  2019年   7篇
  2018年   13篇
  2017年   12篇
  2016年   16篇
  2015年   8篇
  2014年   16篇
  2013年   19篇
  2012年   21篇
  2011年   14篇
  2010年   12篇
  2009年   15篇
  2008年   11篇
  2007年   17篇
  2006年   11篇
  2005年   11篇
  2004年   9篇
  2003年   6篇
  2002年   3篇
  2001年   4篇
  2000年   5篇
  1999年   1篇
  1998年   3篇
  1997年   2篇
  1996年   6篇
  1995年   3篇
  1994年   5篇
  1993年   1篇
  1991年   3篇
  1990年   1篇
  1987年   1篇
  1985年   1篇
  1984年   3篇
  1983年   1篇
  1982年   5篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
  1965年   1篇
排序方式: 共有295条查询结果,搜索用时 15 毫秒
31.
Previous interdisciplinary paleoenvironmental and archaeological research along the Río Verde Valley of Oaxaca, Mexico, showed that Holocene erosion in the highland valleys of the upper drainage basin triggered geomorphic changes in the river's coastal floodplain. This article uses stratigraphic data from sediment cores extracted from Laguna Pastoría, an estuary in the lower Río Verde Valley, to examine changes in coastal geomorphology potentially triggered by highland erosion. Coastal lagoon sediments contain a stratigraphically and chronologically distinct record of major hurricane strikes during late Holocene times. Three distinct storm facies are identified from sediment cores obtained from Laguna Pastoría, which indicate that profound coastal environmental changes occurred within the region and are correlated with increased sediment supplied from highland erosion. The Chione/Laevicardium facies was deposited in an open bay while the Mytella/barnacle facies and sand facies were deposited in an enclosed lagoon following bay barrier formation. We argue that highland erosion triggered major geomorphic changes in the lowlands including bay barrier formation by 2500 cal yr B.P. These environmental changes may have had significant effects on human populations in the region. The lagoon stratigraphy further indicates an increase in mid–late Holocene hurricane activity, possibly caused by increased El Niño frequencies.  相似文献   
32.
This survey provides baseline information on sediment characteristics, porewater, adsorbed and plant tissue nutrients from intertidal coastal seagrass meadows in the central region of the Great Barrier Reef World Heritage Area. Data collected from 11 locations, representative of intertidal coastal seagrass beds across the region, indicated that the chemical environment was typical of other tropical intertidal areas. Results using two different extraction methods highlight the need for caution when choosing an adsorbed phosphate extraction technique, as sediment type affects the analytical outcome. Comparison with published values indicates that the range of nutrient parameters measured is equivalent to those measured across tropical systems globally. However, the nutrient values in seagrass leaves and their molar ratios for Halophila ovalis and Halodule uninervis were much higher than the values from the literature from this and other regions, obtained using the same techniques, suggesting that these species act as nutrient sponges, in contrast with Zostera capricorni. The limited historical data from this region suggest that the nitrogen and phosphorus content of seagrass leaves has increased since the 1970s concomitant with changing land use practice.  相似文献   
33.
Regional or local scale hydrological impact studies require high resolution climate change scenarios which should incorporate some assessment of uncertainties in future climate projections. This paper describes a method used to produce a multi-model ensemble of multivariate weather simulations including spatial–temporal rainfall scenarios and single-site temperature and potential evapotranspiration scenarios for hydrological impact assessment in the Dommel catchment (1,350 km2) in The Netherlands and Belgium. A multi-site stochastic rainfall model combined with a rainfall conditioned weather generator have been used for the first time with the change factor approach to downscale projections of change derived from eight Regional Climate Model (RCM) experiments for the SRES A2 emission scenario for the period 2071–2100. For winter, all downscaled scenarios show an increase in mean daily precipitation (catchment average change of +9% to +40%) and typically an increase in the proportion of wet days, while for summer a decrease in mean daily precipitation (−16% to −57%) and proportion of wet days is projected. The range of projected mean temperature is 7.7°C to 9.1°C for winter and 19.9°C to 23.3°C for summer, relative to means for the control period (1961–1990) of 3.8°C and 16.8°C, respectively. Mean annual potential evapotranspiration is projected to increase by between +17% and +36%. The magnitude and seasonal distribution of changes in the downscaled climate change projections are strongly influenced by the General Circulation Model (GCM) providing boundary conditions for the RCM experiments. Therefore, a multi-model ensemble of climate change scenarios based on different RCMs and GCMs provides more robust estimates of precipitation, temperature and evapotranspiration for hydrological impact assessments, at both regional and local scale.  相似文献   
34.
Forested peatlands are widespread in boreal regions of Canada, and these ecosystems, which are major terrestrial carbon sinks, are undergoing significant transformations linked to climate change, fires and human activities. This study targets millennial‐scale vegetation dynamics and related hydrological variability in forested peatlands of the Clay Belt south of James Bay, eastern Canada, using palaeoecological data. Changes in peatland vegetation communities were reconstructed using plant macrofossil analyses, and variations in water‐table depths were inferred using testate amoeba analyses. High‐resolution analyses of macroscopic charcoal >0.5 mm were used to reconstruct local fire history. Our data showed two successional pathways towards the development of present‐day forested peatlands influenced by autogenic processes such as vertical peat growth and related drying, and allogenic factors such as the occurrence of local fires. The oldest documented peatland initiated in a wet rich fen around 8000 cal. a BP shortly after land emergence and transformed into a drier forested bog rapidly after peat inception that persisted over millennia. In the second site, peat started to accumulate from ~5200 cal. a BP over a mesic coniferous forest that shifted into a wet forested peatland following a fire that partially consumed the organic layer ~4600 cal. a BP. The charcoal records show that fires rarely occurred in these peatlands, but they have favoured the process of forest paludification and influenced successional trajectories over millennia. The macrofossil data suggest that Picea mariana (black spruce) persisted on the peatlands throughout their development, although there were periods of more open canopy due to local fires in some cases. This study brings new understanding on the natural variability of boreal forested peatlands which may help predict their response to future changes in climate, fire regimes and anthropogenic disturbances.  相似文献   
35.
<正>1.Overview The 2016 Quadrennial Ozone Symposium(QOS-2016)was held on 4–9 September 2016 in Edinburgh,UK.The Symposium was organized by the International Ozone Commission(IO3C),the NERC Centre for EcologyHydrology and the University of Edinburgh,and was co-sponsored by the International Union of Geodesy and Geophysics,the International Association of Meteorology and Atmospheric  相似文献   
36.
The effects on the convective boundary layer (CBL) of shading due to shallow cumulus clouds are investigated. The main question is to see whether clouds are able to produce secondary circulations by shading of the surface (dynamic heterogeneities) and how these dynamic heterogeneities interact with static heterogeneities in terms of the production of secondary circulations. Also the effects of cloud shadows on cloud-field characteristics are analyzed. The effects are studied using large-eddy simulations of a cloud-topped CBL with an idealized surface. Over a homogeneous surface, shadows trigger secondary circulations with different strengths depending on the solar zenith angle \(\vartheta \), with large \(\vartheta \) favouring the development of secondary circulations. Over a static heterogeneous surface with a simple striped pattern, the strength of secondary circulations is effectively reduced by dynamic heterogeneities at small \(\vartheta \). At large \(\vartheta \), however, the effect on secondary circulations depends on the orientation of the striped static heterogeneities to the shadow-casting direction of the clouds. The influence of shadows is only small if they are cast perpendicular to the striped heterogeneity, but if stripes and the shadow-casting direction are parallel, secondary circulations are reduced in strength also for large \(\vartheta \). Shadow effects on the cloud-field characteristics vary with \(\vartheta \) as well. The results show that small \(\vartheta \) favours the development of small clouds with a reduced lifetime while large \(\vartheta \) promotes the development of larger clouds with an extended lifetime compared to non-shading clouds.  相似文献   
37.
This study is focused on a passive treatment system known as the horizontal reactive treatment well (HRX Well®) installed parallel to groundwater flow, which operates on the principle of flow focusing that results from the hydraulic conductivity (K) ratio of the well and aquifer media. Passive flow and capture in the HRX Well are described by simplified equations adapted from Darcy's Law. A field pilot-scale study (PSS) and numerical simulations using a finite element method (FEM) were conducted to verify the HRX Well concept and test the validity of the HRX Well-simplified equations. The hydraulic performance results from both studies were observed to be within a close agreement to the simplified equations and their hydraulic capture width approximately five times greater than the well diameter (0.20 m). Key parameters affecting capture included the aquifer thickness, well diameter, and permeability ratio of the HRX Well treatment media and aquifer material. During pilot testing, the HRX Well captured 39% of flow while representing 0.5% of the test pit cross-sectional volume, indicating that the well captures a substantial amount of surrounding groundwater. While uncertainty in the aquifer and well properties (porosity, K, well losses), including the effects of boundary conditions, may have caused minor differences in the results, data from this study indicate that the simplified equations are valid for the conceptual design of a field study. A full-scale HRX Well was installed at Site SS003 at Vanderberg Air Force Base, California, in July/August 2018 based on outcomes from this study.  相似文献   
38.
The horizontal reactive media treatment well (HRX Well®) uses directionally drilled horizontal wells filled with a treatment media to induce flow-focusing behavior created by the well-to-aquifer permeability contrast to passively capture proportionally large volumes of groundwater. Groundwater is treated in situ as it flows through the HRX Well and downgradient portions of the aquifer are cleaned via elution as these zones are flushed with clean water discharging from the HRX Well. The HRX Well concept is particularly well suited for sites where long-term mass discharge control is a primary performance objective. This concept is appropriate for recalcitrant and difficult-to-treat constituents, including chlorinated solvents, per- and polyfluoroalkyl substances (PFAS), 1,4-dioxane, and metals. A full-scale HRX Well was installed and operated to treat trichloroethene (TCE) with zero valent iron (ZVI). The model-predicted enhanced flow through the HRX Well (compared to the flow in and equivalent cross-sectional area orthogonal to flow in the natural formation before HRX Well installation) and treatment zone width was consistent with flows and widths estimated independently by point velocity probe (PVP) testing, HRX Well tracer testing, and observed treatment in downgradient monitoring wells. The actual average capture zone width was estimated to be between 45 and 69 feet. Total TCE mass discharge reduction was maintained through the duration of the performance monitoring period and exceeded 99.99% (%). Decreases in TCE concentrations were observed at all four downgradient monitoring wells within the treatment zone (ranging from 50 to 74% at day 436), and the first arrival of treated water was consistent with model predictions. The field demonstration confirmed the HRX Well technology is best suited for long-term mass discharge control, can be installed under active infrastructure, requires limited ongoing operation and maintenance, and has low life cycle energy and water requirements.  相似文献   
39.
Both the rate and the vertical distribution of soil disturbance modify soil properties such as porosity, particle size, chemical composition and age structure; all of which play an important role in a soil's biogeochemical functioning. Whereas rates of mixing have been previously quantified, the nature of bioturbation's depth dependence remains poorly constrained. Here we constrain, for the first time, the relationship between mixing rate and depth in a bioturbated soil in northeast Queensland, Australia using a novel method combining OSL (optically‐stimulated luminescence) ages and meteoric beryllium‐10 (10Be) inventories. We find that the best fit mixing rate decreases non‐linearly with increasing soil depth in this soil and the characteristic length scale of 0.28 m over which the mixing coefficient decays is comparable to reported rooting depth coefficients. In addition we show that estimates of surface mixing rates from OSL data are highly dependent on erosion rate and that erosion rate must be constrained if accurate mixing rates are to be quantified. We calculate surface diffusion‐like mixing coefficients of 1.8 × 10?4 and 2.1 × 10?4 m2 yr?1 for the studied soil for two different estimates of soil erosion. © 2014 The Authors. Earth Surface Processes and Landforms Published by John Wiley & Sons Ltd.  相似文献   
40.
The calcarean sponge Paraleucilla magna is classified as being an invasive species on the Mediterranean Sea, where it causes economic damages to mollusc farms. On the Brazilian coast, this species is considered to be cryptogenic, and information on its ecology is scarce. The same is true for Sycettusa hastifera, another calcarean sponge with a worldwide distribution. Data on the ecology of these species could help in elucidating their potential to become a threat if they are found to be exotic species in Brazil. In the present work, we studied habitat selection, growth and mortality of early juveniles of P. magna and habitat selection of S. hastifera in a Marine Reserve from Southeastern Brazil, where these species are abundant in the benthic community. Granite plates were used for habitat selection analysis, varying in substrate inclination (vertical and horizontal) and exposure to light and hydrodynamism (exposed and sheltered). To analyse the growth and mortality rates, sponges were mapped and then measured once a week for 10 weeks. If a monitored sponge was not found in the following week, it was considered to be dead. Our results showed that, although P. magna and S. hastifera are capable of inhabiting substrates exposed to different environmental conditions, they showed habitat preferences. Growth of the juveniles of P. magna seemed not to have damaged any neighbouring invertebrates. The mortality of juveniles of this species was higher during the first 2 weeks of life but its causes could not be elucidated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号