首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   131篇
  免费   3篇
大气科学   9篇
地球物理   54篇
地质学   35篇
海洋学   1篇
天文学   30篇
自然地理   5篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   4篇
  2017年   3篇
  2016年   4篇
  2015年   4篇
  2014年   6篇
  2013年   8篇
  2012年   7篇
  2011年   8篇
  2010年   2篇
  2009年   9篇
  2008年   2篇
  2007年   3篇
  2006年   2篇
  2005年   2篇
  2004年   2篇
  1999年   2篇
  1996年   3篇
  1995年   3篇
  1994年   6篇
  1993年   4篇
  1992年   7篇
  1991年   3篇
  1989年   1篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1978年   2篇
  1977年   1篇
  1976年   2篇
  1975年   3篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
  1968年   5篇
  1967年   4篇
  1966年   1篇
  1965年   1篇
  1964年   1篇
  1963年   2篇
  1960年   2篇
  1959年   1篇
  1958年   1篇
排序方式: 共有134条查询结果,搜索用时 46 毫秒
101.
Summary The present contribution contains a brief review of palaeomagnetic investigation carried out in Czechoslovak hydrothermal deposits. So far polar wandering has been considered on the basis of palaeomagnetism of lavas and red sediments; to first approximation it agrees with palaeoclimatic data. Since the products of hydrothermal mineralizations have displayed a high stability of the magnetic parameters used in palaeomagnetism, the treatment of a greater amount of statistical material yielded data for deriving the polar wandering path during geological history. By analyzing the curve obtained it is possible to derive some geochronological conclusions concerning the age of the ore-yielding processes in the principal Czechoslovak metallogenic areas. In this way a new dating technique for products of hydrothermal mineralizations is presented based on the study of palaeomagnetic properties. At the same time, these new results are consistent with the geophysical interpretation of the polar wandering curve for Europe.  相似文献   
102.
We report new occurrences of “two-phase” granitic textures from the Western Krušné hory/Erzgebirge pluton (central Europe) and use crystal-size distribution data and thermodynamic modeling to interpret their crystallization conditions. The two-phase texture consists of (1) early phenocrysts of quartz, plagioclase, K-feldspar and biotite, (2) medium-grained matrix of the same phases and (3) interstitial channels and patches of a late-stage, very fine-grained matrix. The porphyritic two-mica microgranites, which host two-phase textures, occur as minor intrusions in early low-F biotite granites or as marginal parts of evolved high-F Li-mica granites. Measurements of the crystal-size distribution of quartz revealed three grain populations: (1) early phenocrysts (0.5–3.0 mm) showing partial resorption by residual melt, (2) a medium-grained population of the equigranular rock matrix (0.05–0.50 mm) that experienced minor coarsening by subsolidus annealing and (3) a fine-grained population (<0.03 mm) in the interstitial channels and patches formed during rapid devolatilization; this quartz group shows no or poor grain coarsening. All samples exhibit similar fraction of the fine-grained population (44–52%) but proportions of phenocrysts to medium-grained matrix vary significantly. Thermodynamic modeling of liquidus equilibria and experimental data in the hydrous haplogranite system require: (1) ascent of a granitic suspension (15–25% phenocrysts) under H2O-undersaturated conditions at 25–45 bar/°C and a cooling rate of 40 J/(g kbar) in order to produce partial resorption of quartz phenocrysts and continued growth of feldspar phenocrysts, followed by (2) emplacement as discrete intrusions or bodies along pluton roof accompanied by sudden devolatilization. At the onset of matrix nucleation, disequilibrium undercooling of 70–85°C was inferred from the presence of micrographic intergrowths of quartz and K-feldspar. The two-phase granites in the Western Krušné hory/Erzgebirge pluton and in the Southeast Asian batholith form compositionally narrow groups with high-silica and moderate volatile enrichments but they differ in peraluminosity and phosphorus concentrations. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
103.
The gravity in the expansive nondecelerative universe originates in the process of permanent constant maximum possible creation of matter .  相似文献   
104.
Natural fractures in hydrocarbon reservoirs can cause significant seismic attenuation and dispersion due to wave induced fluid flow between pores and fractures. We present two theoretical models explicitly based on the solution of Biot's equations of poroelasticity. The first model considers fractures as planes of weakness (or highly compliant and very thin layers) of infinite extent. In the second model fractures are modelled as thin penny-shaped voids of finite radius. In both models attenuation is a result of conversion of the incident compressional wave energy into the diffusive Biot slow wave at the fracture surface and exhibits a typical relaxation peak around a normalized frequency of about 1. This corresponds to a frequency where the fluid diffusion length is of the order of crack spacing for the first model and the crack diameter for the second. This is consistent with an intuitive understanding of the nature of attenuation: when fractures are closely and regularly spaced, the Biot's slow waves produced by cracks interfere with each other, with the interference pattern controlled by the fracture spacing. Conversely, if fractures are of finite length, which is smaller than spacing, then fractures act as independent scatterers and the attenuation resembles the pattern of scattering by isolated cracks. An approximate mathematical approach based on the use of a branching function gives a unified analytical framework for both models.  相似文献   
105.
Electrical resistivity of the Earth’s crust is sensitive to a wide range of petrological and physical parameters, and it particularly clearly indicates crustal zones that have been tectonically or thermodynamically disturbed. A complex geological structure of the Alpine nappe system, remnants of older Hercynian units and Neogene block tectonics in Western Slovakia has been a target of recent magnetotelluric investigations which made a new and more precise identification of the crustal structural elements of the Western Carpathians possible. A NW-SE magnetotelluric profile, 150 km long, with 30 broad-band and 3 long-period magnetotelluric sites, was deployed, crossing the major regional tectonic elements listed from the north: Brunia (as a part of the European platform), Outer Carpathian Flysch, Klippen Belt, blocks of Penninic or Oravicum crust, Tatricum and Veporicum. Magnetotelluric models were combined with previous seismic and gravimetric results and jointly interpreted in the final integrated geological model. The magnetotelluric models of geoelectrical structures exhibit strong correlation with the geological structures of the crust in this part of the Western Carpathians. The significant resemblance in geoelectrical and crustal geological structures are highlighted in shallow resistive structures of the covering formations represented by mainly Tertiary sediments and volcanics. Also in the deeper parts of the crust highly resistive and conductive structures are shown, which reflect the original building Hercynian crust, with superposition of granitoids or granitised complexes and lower metamorphosed complexes. Another important typical feature in the construction of the Western Carpathians is the existence of young Neogene steep fault zones exhibited by conductive zones within the whole crust. The most significant fault zones separate individual blocks of the Western Carpathians and the Western Carpathians itself from the European Platform.  相似文献   
106.
Drifting pulsation structures (DPSs) are considered to be radio signatures of the plasmoids formed during magnetic reconnection in the impulsive phase of solar flares. In the present paper we analyze oscillations and waves in seven examples of drifting pulsation structures, observed by the 800?–?2000 MHz Ond?ejov Radiospectrograph. For their analysis we use a new type of oscillation maps, which give us much more information as regards processes in DPSs than that in previous analyses. Based on these oscillation maps, made from radio spectra by the wavelet technique, we recognized quasi-periodic oscillations with periods ranging from about 1 to 108 s in all studied DPSs. This strongly supports the idea that DPSs are generated during a fragmented magnetic reconnection. Phases of most the oscillations in DPSs, especially for the period around 1 s, are synchronized (“infinite” frequency drift) in the whole frequency range of DPSs. For longer periods in some DPSs we found that the phases of the oscillations drift with the frequency drift in the interval from ?17 to \(+287~\mbox{MHz}\,\mbox{s}^{-1}\). We propose that these drifting phases can be caused (a) by the fast or slow magnetosonic waves generated during the magnetic reconnection and propagating through the plasmoid, (b) by a quasi-periodic structure in the plasma inflowing to the reconnection forming a plasmoid, and (c) by a quasi-periodically varying reconnection rate in the X-point of the reconnection close to the plasmoid.  相似文献   
107.
The Hercynian mountain ranges were islands of mountain glaciation and alpine tundra in a Central European ice‐free corridor during the Late Pleistocene. Today they are notable areas of glacial landforms, alpine‐forest free areas, peatlands and woodlands. However, our knowledge of the Lateglacial and early Holocene environmental changes in this region is limited. We present a new multi‐proxy reconstruction of a mid‐altitude environment in the Bohemian Forest spanning this period. A core (5.2 m length) in the ?erné Lake cirque (1028 m a.s.l.) was subjected to lithological, geochemical, pollen and macrofossil analysis supplemented by two optically stimulated luminescence (OSL) and 10 AMS radiocarbon dates. We determined the impact of regional and supraregional climate changes on the environment. The two most significant changes in sedimentation during the Lateglacial (17.6 and 15.8–15.5 cal. ka BP) were synchronous with regional glacial chronostratigraphy. Unlike Central European mountain ranges, in the Bohemian Forest the Younger Dryas was not coincident with glacier re‐advance, but was a dry, cold episode with low lake levels, which prevailed until the early Preboreal. Plant macrofossils indicate local establishment of Betula nana and Betula pendula/pubescens at 15.4–13.4 cal. ka BP. Comparison with Holocene records from Central Europe shows a similar immigration history of vegetation at mid and higher altitudes. The tree line exceeded an altitude of ~1000 m a.s.l. around 10.5 cal. ka BP and coincided with rapid geochemical changes in the sediment. The 8.2 ka BP event did not have any response in the sedimentary record, but corresponded to stabilization of the Picea abies population and expansion of Fagus. Fagus colonized the Bohemian Forest earlier than other Hercynian mid‐mountains, but never predominated in the composition of the forest at higher elevations. Abies alba was the last tree species that immigrated to the study area.  相似文献   
108.
During the past few decades, the basic assumption of agroclimatic zoning, i.e., that agroclimatic conditions remain relatively stable, has been shattered by ongoing climate change. The first aim of this study was to develop a tool that would allow for effective analysis of various agroclimatic indicators and their dynamics under climate change conditions for a particular region. The results of this effort were summarized in the AgriClim software package, which provides users with a wide range of parameters essential for the evaluation of climate-related stress factors in agricultural crop production. The software was then tested over an area of 114,000 km2 in Central Europe. We have found that by 2020, the combination of increased air temperature and changes in the amount and distribution of precipitation will lead to a prolonged growing season and significant shifts in the agroclimatic zones in Central Europe; in particular, the areas that are currently most productive will be reduced and replaced by warmer but drier conditions in the same time the higher elevations will most likely experience improvement in their agroclimatic conditions. This positive effect might be short-lived, as by 2050, even these areas might experience much drier conditions than observed currently. Both the rate and the scale of the shift are amazing as by 2020 (assuming upper range of the climate change projections) only 20?C38% of agriculture land in the evaluated region will remain in the same agroclimatic and by 2050 it might be less than 2%. On the other hand farmers will be able to take advantage of an earlier start to the growing season, at least in the lowland areas, as the proportion of days suitable for sowing increases. As all of these changes might occur within less than four decades, these issues could pose serious adaptation challenges for farmers and governmental policies. The presented results also suggest that the rate of change might be so rapid that the concept of static agroclimatic zoning itself might lose relevance due to perpetual change.  相似文献   
109.
Recently, near infrared spectroscopy in combination with double derivative technique has been effectively used by Christy (Vib Spectrosc 54:42–49, 2010) to study and differentiate between free and hydrogen bonded silanol groups on silica gel surface. The method has given some insight into the type of functionalities, their location in silica gel samples, and the way the water molecules bind onto the silanol groups. The important information in this respect comes from the overtones of the OH groups of water molecules hydrogen-bonded to free silanol groups, and hydrogen-bonded silanol groups absorbing in the region 5,500–5,100 cm−1. Chemically, opal minerals are hydrated silica and the same approach was adapted to study the state of water molecules, silanol functionalities, and their locations in opal samples from Slovakia. Twenty opal samples classified into CT and A classes and one quartz sample were used in this work. The samples were crushed using a hydraulic press and powderized. Each sample was then subjected to evacuation process to remove surface-adsorbed water at 200°C, and the near infrared spectrum of each sample was measured using a Perkin Elmer NTS FT-NIR spectrometer equipped with a transflectance accessory and a DTGS detector. The samples were also heated to 750°C to remove the hydrogen-bonded silanol groups on the surface to reveal their locality. Second derivative profiles of the near infrared reflectance spectra were obtained using the instrument’s software and used in the detailed analysis of the samples. The analysis of the near infrared spectra and their second derivative profiles had the aim in finding relationships between the surface chemical structure and the classification of opal samples. The dry opal samples were also tested for their surface adsorption effectivity toward water molecules. The results indicate that the opal samples contain (1) surface-adsorbed water, (2) free and hydrogen-bonded silanol groups on the surface, (3) trapped water molecules in the bulk, and (4) free and hydrogen-bonded silanol groups in the cavity surfaces in the bulk. A part of the water molecules in the bulk of opal minerals are found as free molecules and the rest are found in hydrogen-bonded state to either free or vicinal or geminal silanol groups.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号