首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59篇
  免费   2篇
测绘学   1篇
大气科学   1篇
地球物理   21篇
地质学   32篇
天文学   1篇
综合类   1篇
自然地理   4篇
  2023年   1篇
  2022年   2篇
  2021年   1篇
  2020年   2篇
  2019年   7篇
  2018年   9篇
  2017年   8篇
  2016年   9篇
  2015年   2篇
  2014年   5篇
  2013年   7篇
  2012年   4篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
排序方式: 共有61条查询结果,搜索用时 218 毫秒
21.
In this research, the hydraulic conductivity changes in uniformly graded sands, due to injection pressure increase, were experimentally evaluated using a cell-type radial model. Conducted tests, simulating variation of media permeability at different depths along a recharge well, were monitoring variations of the samples’ hydraulic conductivity at predetermined three different overburden pressures. The startup low pressure inflow was afterward altered by increasing the injection pressure up to the point at which hydraulic conductivity started to change at each run; we called it the threshold injection pressure. The corresponding hydraulic conductivity at such pressure was measured. As the increased permeability was a function of distance to the simulated recharge, it was deemed too beneficial to develop an equation to enable predicting this new hydraulic conductivity at different distances. Findings indicate that in uniformly graded sands under overburden pressure up to 68.64 kPa, the hydraulic conductivity in the threshold injection pressure—compared to its primary amount up to 45 cm from borehole wall—show a remarkable growth. However, this growth rate for greater distances up to 60 cm is negligible. Furthermore, in the threshold injection pressure, the hydraulic conductivity seems not to be time dependent. But, in constant injection pressures above the threshold injection pressure, the hydraulic conductivity shows some sort of time dependency.  相似文献   
22.
The installation of free falling jet grade control structures has become a popular choice for river bed stabilization. However, the formation and development of scour downstream of the structure may lead to failure of the structure itself. The current approaches to scour depth prediction are generally based on studies conducted with the absence of upward seepage. In the present study, the effects of upward seepage on the scour depth were investigated. A total of 78 tests without and with the application of upward seepage were carried out using three different sediment sizes, three different tailwater depths, four different flow discharges, and four different upward seepage flow discharge rates. In some tests, the three-dimensional components of the flow velocity within the scour hole were measured for both the cases with and without upward seepage. The scour depth measured for the no-seepage results compared well with the most accurate relationship found in the literature. It was found that generally the upward seepage reduced the downward velocity components near the bed, which led to a decrease in the maximum scour depth. A maximum scour depth reduction of 49% was found for a minimum tailwater depth, small sediment size, and high flow discharge. A decay of the downward velocity vector within the jet impingement was found due to the upward seepage flow velocity. The well known equation of D’Agostino and Ferro was modified to account for the effect of upward seepage, which satisfactorily predicted the experimental scour depth, with a reasonable average error of 10.7%.  相似文献   
23.
In this research, a parametric study is carried out on the effect of soil–structure interaction on the ductility and strength demand of buildings with embedded foundation. Both kinematic interaction (KI) and inertial interaction effects are considered. The sub‐structure method is used in which the structure is modeled by a simplified single degree of freedom system with idealized bilinear behavior. Besides, the soil sub‐structure is considered as a homogeneous half‐space and is modeled by a discrete model based on the concept of cone models. The foundation is modeled as a rigid cylinder embedded in the soil with different embedment ratios. The soil–structure system is then analyzed subjected to a suit of 24 selected accelerograms recorded on alluvium deposits. An extensive parametric study is performed for a wide range of the introduced non‐dimensional key parameters, which control the problem. It is concluded that foundation embedment may increase the structural demands for slender buildings especially for the case of relatively soft soils. However, the increase in ductility demands may not be significant for shallow foundations with embedment depth to radius of foundation ratios up to one. Comparing the results with and without inclusion of KI reveals that the rocking input motion due to KI plays the main role in this phenomenon. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
24.
25.
From August 2016 to July 2017, a passive seismic survey was conducted in South Western Iran as a part of a pilot project aimed to improve the imaging in geologically complex areas. Passive seismic methods have shown to be a useful tool to infer the physical properties of the underground geological structures where traditional hydrocarbon exploration methods are challenging. For this purpose, a dense passive seismic network consisting of 119 three-component borehole seismic stations was deployed over an area of 400 km2 around the city of Dehdasht. This paper focuses on the details of the network design, which was devoted to high-resolution seismological applications, including local earthquake tomography and seismic attenuation imaging. In this regard, we describe the instrument types and the station installation procedures used to obtain high-quality data that were used to retrieve three-dimensional models of P- and S-wave velocity and P-wave attenuation in the area using tomographic inversion techniques. We also assess the network performance in terms of the seismic ambient noise levels recorded at each station site, and we revise the horizontal orientation of the sensors using surface waves from teleseismic earthquakes.  相似文献   
26.
Qanat is an ancient underground structure to abstract groundwater without the need for external energy. A recognized world heritage, Qanat has enabled civilization in arid and semi-arid regions that lack perennial surface water resources. These important structures, however, have faced significant challenges in recent decades due to increasing anthropogenic pressures. This study uses remote sensing to investigate land-use changes and the loss of 15,983 Qanat shafts in the Mashhad plain, northeast of Iran, during the past six decades. This entails obtaining a rare aerial imagery from 1961, as well as recent satellite imagery, over a region with the highest density of Qanats in Iran, the birthplace of Qanat. Results showed that only 5.59% of the Qanat shafts in 1961 remained intact in 2021. The most prominent Qanat-impacting land-use changes were agriculture and urban areas, that accounted for 42.93 and 31.81% Qanat shaft destruction in the study area, respectively. This study also showed that groundwater table decline, demographic changes, and reduction in the appeal of working in the Qanat maintenance and construction industry among the new generation are existential threats to Qanats, and may result in the demise of these ancient structures in the future. Findings of this study can be used for urban planning in arid and semi-arid areas with the aim of protecting these historic water structures.  相似文献   
27.
28.
Evaluation of soil collapse potential in regional scale   总被引:2,自引:1,他引:1  
Collapsible soils have considerable strength and stiffness in their dry natural state but settle dramatically when they become wet. This paper documents a low-cost, qualitative evaluation scheme using fuzzy set analysis to determine site collapsibility based on subjective knowledge of the geological, geotechnical, and environmental conditions and their uncertainty. For each category, factors or subcategories were defined in a decision tree based on relevant literature. Each category and subcategory was then weighted or rated using linguistic terms developed from expert assessment. The linguistic data or information obtained from the assessments was represented and processed using fuzzy sets. To calibrate the criteria, 87 collapse potential tests were performed on undisturbed soil samples gathered from 27 different locations throughout Iran, leading to the definition of a standard collapse potential fuzzy set. Finally, on the basis of the established criteria, a collapse potential map was prepared for a suburban area in the western part of the city of Kerman, Iran.  相似文献   
29.
The strength of anisotropic rock masses can be evaluated through either theoretical or experimental methods. The latter is more precise but also more expensive and time-consuming especially due to difficulties of preparing high-quality samples. Numerical methods, such as finite element method (FEM), finite difference method (FDM), distinct element method (DEM), etc. have been regarded as precise and low-cost theoretical approaches in different fields of rock engineering. On the other hand, applicability of intelligent approaches such as fuzzy systems, neural networks and decision trees in rock mechanics problems has been recognized through numerous published papers. In current study, it is aimed to theoretically evaluate the strength of anisotropic rocks with through-going discontinuity using numerical and intelligent methods. In order to do this, first, strength data of such rocks are collected from the literature. Then FlAC, a commercially well-known software for FDM analysis, is applied to simulate the situation of triaxial test on anisotropic jointed specimens. Reliability of this simulation in predicting the strength of jointed specimens has been verified by previous researches. Therefore, the few gaps of the experimental data are filled by numerical simulation to prevent unexpected learning errors. Furthermore, a sensitivity analysis is carried out based on the numerical process applied herein. Finally, two intelligent methods namely feed forward neural network and a newly developed fuzzy modeling approach are utilized to predict the strength of above-mentioned specimens. Comparison of the results with experimental data demonstrates that the intelligent models result in desirable prediction accuracy.  相似文献   
30.
Nuclear Magnetic Resonance (NMR) logging provides priceless information about hydrocarbon bearing intervals such as free fluid porosity and permeability. This study focuses on using geostatistics from NMR logging instruments at high depths of investigation to enhance vertical resolution for better understanding of reservoirs. In this study, a NMR log was used such that half of its midpoint data was used for geostatistical model construction using an ordinary kriging technique and the rest of the data points were used for assessing the performance of the constructed model. This strategy enhances the resolution of NMR logging by twofold. Results indicated that the correlation coefficient between measured and predicted permeability and free fluid porosity is equal to 0.976 and 0.970, respectively. This means that geostatistical modeling is capable of enhancing the vertical resolution of NMR logging. This study was successfully applied to carbonate reservoir rocks of the South Pars Gas Field.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号