首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   528篇
  免费   29篇
  国内免费   12篇
测绘学   34篇
大气科学   34篇
地球物理   128篇
地质学   290篇
海洋学   20篇
天文学   37篇
综合类   4篇
自然地理   22篇
  2023年   3篇
  2022年   12篇
  2021年   25篇
  2020年   26篇
  2019年   24篇
  2018年   52篇
  2017年   42篇
  2016年   71篇
  2015年   34篇
  2014年   50篇
  2013年   60篇
  2012年   42篇
  2011年   41篇
  2010年   26篇
  2009年   20篇
  2008年   9篇
  2007年   6篇
  2006年   6篇
  2005年   2篇
  2004年   4篇
  2003年   2篇
  2001年   1篇
  1998年   3篇
  1997年   4篇
  1991年   1篇
  1975年   3篇
排序方式: 共有569条查询结果,搜索用时 15 毫秒
1.
Water Resources - The present study aimed to locate the areas prone to flood spreading in order to manage surface water resources. Therefore, the information layers of slope, land capability,...  相似文献   
2.
In radio astronomy, the Ultra-Long Wavelengths (ULW) regime of longer than 10 m (frequencies below 30 MHz), remains the last virtually unexplored window of the celestial electromagnetic spectrum. The strength of the science case for extending radio astronomy into the ULW window is growing. However, the opaqueness of the Earth’s ionosphere makes ULW observations by ground-based facilities practically impossible. Furthermore, the ULW spectrum is full of anthropogenic radio frequency interference (RFI). The only radical solution for both problems is in placing an ULW astronomy facility in space. We present a concept of a key element of a space-borne ULW array facility, an antenna that addresses radio astronomical specifications. A tripole–type antenna and amplifier are analysed as a solution for ULW implementation. A receiver system with a low power dissipation is discussed as well. The active antenna is optimized to operate at the noise level defined by the celestial emission in the frequency band 1 ? 30 MHz. Field experiments with a prototype tripole antenna enabled estimates of the system noise temperature. They indicated that the proposed concept meets the requirements of a space-borne ULW array facility.  相似文献   
3.
The saltation regime is very important for understanding the sediment transport mechanism. However,there is no consensus on a model for the saltation regime. This study answers several questions raised with respect to the Eulerian-Lagrangian modeling of sediment transport. The first question is why the previous saltation models that use different combinations of hydrodynamic forces yielded acceptable results? The second question is which shear lift model(i.e. a shear lift expression and its coefficient) is more appropriate? Another important question is which hydrodynamic forces have greater contributions to the saltation characteristics of a sediment particle? The last question is what are the contributions of the turbulence fluctuations as well as effects of using two-and three-dimensional(2 D and 3 D) models on the simulation results? In order to fairly answer these questions, a systematic study was done by considering different scenarios. The current study is the first attempt to clearly discuss these issues. A comprehensive 3 D saltation model for non-cohesive sediment was developed that includes all the hydrodynamic forces acting on the particle. The random nature of sediment transport was included using turbulent flow and bed-particle collision models. The eddy interaction model was applied to generate a3 D turbulent flow field. Bed-particle collisions were considered using the concept of a contact zone and a corresponding contact point. The validation of the model was done using the available experimental data for a wide range of sediment size(0.03 to 4.8 cm). For the first question, the results indicated that some of the hydrodynamic effects show opposing trends and some have negligible effects. With these opposing effects it is possible to adjust the coefficients of different models to achieve acceptable agreement with the same experimental data while omitting some aspects of the physics of the process. A suitable model for the shear lift force was developed by linking the lift coefficient to the drag coefficient and the contributions of the hydrodynamic forces and turbulence fluctuations as well as the consequences of using of 2 D and 3 D models were studied. The results indicate that the shear lift force and turbulent flow fluctuations are important factors for the saltation of both sand and gravel, and they cannot be ignored.  相似文献   
4.
Eikonal solvers often have stability problems if the velocity model is mildly heterogeneous. We derive a stable and compact form of the eikonal equation for P‐wave propagation in vertical transverse isotropic media. The obtained formulation is more compact than other formulations and therefore computationally attractive. We implemented ray shooting for this new equation through a Hamiltonian formalism. Ray tracing based on this new equation is tested on both simple as well as more realistic mildly heterogeneous velocity models. We show through examples that the new equation gives travel times that coincide with the travel time picks from wave equation modelling for anisotropic wave propagation.  相似文献   
5.
Natural Resources Research - Machine learning (ML) schemes can enhance success in geochemical prospectivity mapping. This study has examined the effectiveness of several feature extraction or...  相似文献   
6.

The compression index (Cc), which is used to calculate the consolidation settlement of fine-grained soils, can be determined through consolidation testing. Given that exploring the soil in a local region is highly important to determine the correlation between the Cc and other soil indices, the present study investigated these correlations in undisturbed and disturbed samples through 130 consolidation tests and determining the Cc of Tehran clay. The results are suggestive of the validity of the linear correlation between the Cc and the unit weight and initial void ratio of the soil, with several relations presented to estimate the Cc of Tehran clay soil. In contrast, the initial water content, liquid limit and the plasticity index do not produce reliable correlations with the Cc of the local clay soil, and a relation based on these index parameters cannot be recommended in this area. Further, the presented empirical correlations were compared with the existing ones. More over time-displacement and e-log σ’ graphs for undisturbed and disturbed samples are compared and stress history of the site are presented. The results are significant in terms of engineering applications, saving time and money and provides an initial estimation of compression index.

  相似文献   
7.

Design of reinforced soil structures is greatly influenced by soil–geosynthetic interactions at interface which is normally assessed by costly and time consuming laboratory tests. In present research, using the results of large-scale direct shear tests conducted on soil–anchored geogrid samples a model for predicting Enhanced Interaction Coefficient (EIC) is proposed enabling researchers/engineers easily, quickly and at no cost to estimate soil–geosynthetic interactions. In this regard well and poorly graded sands, anchors of three different size and anchorage lengths from the shear surface together with normal pressures of 12.5, 25 and 50 kPa were used. Artificial Intelligence (AI) called the Gene Expression Programming (GEP) was adopted to develop the model. Input variables included coefficients of curvature and uniformity, normal pressure, effective grain size, anchor base and surface area, anchorage length and the output variable was EIC. Contributions of input variables were evaluated using sensitivity analysis. Excellent correlation between the GEP-based model and the experimental results were achieved showing that the proposed model is well capable of effectively estimating soil–anchored geogrid enhanced interaction coefficient. Sensitivity analysis for parameter importance shows that the most influential variables are normal pressure (σn) and anchorage length (L) and the least effective parameters are average particle size (D50) and anchor base area (Ab).

  相似文献   
8.
Spectral methods and 2 years of daily data were used to estimate the phase lag between precipitation and groundwater-level response, and two decades of quarterly data were used to analyze the interaction between precipitation, lake levels and groundwater in the Trout Lake watershed located in Vilas County, Wisconsin, USA. The phase-lag function between precipitation and groundwater response is used to estimate recharge travel time. The recharge travel time and precipitation–groundwater–lake interactions have been traditionally studied using time-domain methods such as physically-based modeling. In this article, the innovative and efficient use of spectral methods is demonstrated to uncover the time scales that are significant in those interactions and estimate the recharge travel time, which is extracted from the underlying daily time series data. The results consistently show that precipitation leads groundwater-level response by up to 5 days in all cases. The effects of precipitation on lake and groundwater levels display strong similarities. Both the precipitation–lake level and the precipitation–groundwater level coherency functions show significant peaks at interannual and seasonal frequencies. The groundwater level–lake level coherency function shows a significant, broad peak at interannual frequencies, and no significant peak at seasonal frequencies, demonstrating the predominance of annual and lower frequencies in groundwater–lake interaction.  相似文献   
9.
Soil particle size distribution (PSD) is used to estimate some soil processes, soil moisture characteristics, and infiltration rate (IR). Prediction of infiltration rate from soil texture data requires an accurate characterization of PSD. The objective of this study was to determine more important primary particle diameters that control IR. The experiments were conducted using double-ring method with constant head of 5 cm in 15 different soils and three replications. The range of measured IR for studied soils varied from 1.6 to 30.66 cm h?1. The results indicated that the primary PSD had a significant influence on IR. In other words, most D n fractions had significant positive effect on the final IR. Among different fractions, D 30, D 40, and D 60 showed higher relationships with IR than the others. These diameters are attributed to particles with diameter of 0.05, 0.08, and 0.16 mm, respectively. The results also showed that increasing the percent of sand have intensified influence on increasing the final IR. Reversely, clay and silt contents showed negative effects on final IR. Furthermore, the CaCO3 had a meaningful effect on the IR that showed the importance of lime in arid and semiarid regions. Finally, it is revealed that the role of texture was important, especially in behavior of infiltration, runoff, and production capability.  相似文献   
10.
This paper emphasises the true realisation of Cone Penetration Test (CPT) profiles considering non-stationary nature of the data. Formulation of stationary random field theory has been modified and adapted to non-stationary state in order to take into account the mean and variance variability for soil properties. Multi-variance correlation matrix along with the Cholesky decomposition technique was employed to produce realisations of non-homogenous and non-stationary random fields of CPT profiles. A piecewise and segmental data realisation according to the lithology and site class specifications acquired directly from CPT data is adopted in this study so as to render an accurate data simulation. For validation of proposed method 8 CPT test profiles collected from Urmia Lake site have been introduced and simulated by the stationary and non-stationary algorithms. The mean correlation coefficient between the actual CPT data profiles and related realisations along with some other important statistical parameters and their coefficients of variation strongly demonstrate that non-stationary random field generation technique gives quite better accuracy, by comparison to the conventional stationary random field generation scheme.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号