首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   628篇
  免费   26篇
  国内免费   3篇
测绘学   44篇
大气科学   42篇
地球物理   141篇
地质学   218篇
海洋学   22篇
天文学   115篇
综合类   5篇
自然地理   70篇
  2023年   4篇
  2022年   5篇
  2021年   12篇
  2020年   12篇
  2019年   21篇
  2018年   19篇
  2017年   17篇
  2016年   28篇
  2015年   22篇
  2014年   24篇
  2013年   50篇
  2012年   38篇
  2011年   21篇
  2010年   24篇
  2009年   40篇
  2008年   25篇
  2007年   31篇
  2006年   22篇
  2005年   32篇
  2004年   25篇
  2003年   22篇
  2002年   24篇
  2001年   17篇
  2000年   16篇
  1999年   10篇
  1998年   6篇
  1997年   8篇
  1996年   8篇
  1995年   9篇
  1994年   2篇
  1993年   3篇
  1992年   2篇
  1991年   2篇
  1990年   5篇
  1989年   3篇
  1988年   2篇
  1987年   7篇
  1984年   5篇
  1983年   2篇
  1982年   3篇
  1981年   1篇
  1980年   5篇
  1979年   6篇
  1978年   5篇
  1977年   2篇
  1975年   1篇
  1974年   1篇
  1973年   3篇
  1972年   2篇
  1970年   1篇
排序方式: 共有657条查询结果,搜索用时 15 毫秒
131.
132.
A study on the dependency of GNSS pseudorange biases on correlator spacing   总被引:2,自引:0,他引:2  
We provide a comprehensive overview of pseudorange biases and their dependency on receiver front-end bandwidth and correlator design. Differences in the chip shape distortions among GNSS satellites are the cause of individual pseudorange biases. The different biases must be corrected for in a number of applications, such as positioning with mixed signals or PPP with ambiguity resolution. Current state-of-the-art is to split the pseudorange bias into a receiver- and a satellite-dependent part. As soon as different receivers with different front-end bandwidths or correlator designs are involved, the satellite biases differ between the receivers and this separation is no longer practicable. A test with a special receiver firmware, which allows tracking a satellite with a range of different correlator spacings, has been conducted with live signals as well as a signal simulator. In addition, the variability of satellite biases is assessed through zero-baseline tests with different GNSS receivers using live satellite signals. The receivers are operated with different settings for multipath mitigation, and the changes in the satellite-dependent biases depending on the receivers’ configuration are observed.  相似文献   
133.
Fluid migration pathways in the subsurface are heavily influenced by pre‐existing faults. Although studies of active fluid‐escape structures can provide insights into the relationships between faults and fluid flow, they cannot fully constrain the geometry of and controls on the contemporaneous subsurface fluid flow pathways. We use 3D seismic reflection data from offshore NW Australia to map 121 ancient hydrothermal vents, likely related to magmatic activity, and a normal fault array considered to form fluid pathways. The buried vents consist of craters up to 264 m deep, which host a mound of disaggregated sedimentary material up to 518 m thick. There is a correlation between vent alignment and underlying fault traces. Seismic‐stratigraphic observations and fault kinematic analyses reveal that the vents were emplaced on an intra‐Tithonian seabed in response to the explosive release of fluids hosted within the fault array. We speculate that during the Late Jurassic the convex‐upwards morphology of the upper tip‐lines of individual faults acted to channelize ascending fluids and control where fluid expulsion and vent formation occurred. This contribution highlights the usefulness of 3D seismic reflection data to constraining normal fault‐controlled subsurface fluid flow.  相似文献   
134.
135.
136.
Dissolved gaseous mercury (DGM) was measured continuously using two newly developed techniques and a manual technique. The continuous techniques were based on the equilibrium between the aqueous and gaseous phase (DGM = Hgextr / H', Hgextr is the measured mercury concentration in the gas phase, H' is the Henry's Law coefficient at the desired temperature). In order to calculate the annual mercury evasion from the Mediterranean Sea, diurnal and seasonal measurements of DGM, total gaseous mercury in air (TGM), water temperature and wind speed were performed. During August 2003, March–April 2004 and October–November 2004 measurements of these parameters were conducted on board the RV Urania. The continuous measurements of DGM showed a diurnal variation in concentration, at both coastal and off shore sites, with higher concentrations during daytime than nighttime. The concentration difference could be as large as 130 fM between day and night. The degree of saturation was calculated directly from the measurements, S = Hgextr / TGM and was found to vary between the different seasons. The highest average degree of saturation (850%) and the largest variation in saturation (600–1150%) was observed during the summer. The spring showed the lowest variation (260–360%) and the lowest average degree of saturation (320%). The autumn also showed a large variation in saturation (500–1070%) but a lower average (740%) compared to the summer cruise. This might be explained by the temperature difference between the different seasons, since that parameter varied the most. The flux from the sea surface was calculated using the gas exchange model developed by Nightingale et al. [Nightingale, P.D., Malin, G., Law, C.S., Watson, A.J., Liss, P.S., Liddicoat, M.I., Boutin, J., Upstill-Goddard, R. C., 2000. In situ evaluation of air–sea gas exchange parameterization using novel conservative and volatile tracers. Global Biogeochemical Cycles, 14(1):373–387]. The evasion varied between the different seasons with the highest evasion during the autumn, 24.6 pmol m− 2 h− 1. The summer value was estimated to 22.3 pmol m− 2 h− 1 and the spring to 7.6 pmol m− 2 h− 1. Using this data the yearly evasion from the Mediterranean Sea surface was estimated to 77 tons.  相似文献   
137.
We describe the fabrication of organically modified sol–gel (ORMOSIL) planar optodes for mapping the two-dimensional oxygen distribution in sediments. All sensor foils were based on the use of ruthenium(II)-tris-(4,7-diphenyl-1,10-phenantrolin)-perchlorate, which is a fluorescent dye quenched dynamically by oxygen. Sensors made with different sol–gel immobilisation matrices, different concentrations of precursors and indicator dye, as well as different types of scattering particles co-immobilised in the sensor foil were investigated systematically. Optimal sensor performance was obtained with dye concentrations of 2–10 mmol/kg in an immobilisation matrix made of diphenyldiethoxy-silan and phenyltriethoxy-silan precursors with addition of organically coated TiO2 particles. The sensors exhibited a good mechanical stability and a high sensitivity from 0% to 100% oxygen, which remained constant over at least 36 days. The planar optodes were used with a fluorescent lifetime imaging system for direct mapping of the spatio-temporal variation in oxygen distribution within marine sediment inhabited by the polychaete Hediste diversicolor. The measurements demonstrated the spatio-temporal heterogeneity of the oxygen distribution in bioturbated sediments due to burrow structures and non-constant irrigation activity of the polychaete, which is difficult to resolve with microsensors or with traditional biogeochemical techniques.  相似文献   
138.
The transition from the Triassic to Jurassic is associated with dramatic changes in Earth's climate. Pangaea was breaking up as North America rifted away from Africa, the Central Atlantic Magmatic Province erupted, and the concentration of atmospheric carbon dioxide increased dramatically. This article summarises the changes in Earth's climate associated with this transition, including a discussion of the various impacts of the increased carbon dioxide on the Earth system, the question of whether the wet episode in the Carnian was a global or regional event, the formation of bauxite deposits, and how dinosaur distributions changed over time. Palaeoclimate model simulations reveal the spatial changes in climate between the Triassic and Jurassic, illustrating the subtropics becoming slightly cooler and wetter despite the warming trend for the Earth's average temperature.  相似文献   
139.
140.
Output from a three‐dimensional numerical flow model (SSIIM) is used in conjunction with high‐resolution topographic and velocity data to assess such models for eco‐hydraulic applications in river channel design and habitat appraisal. A new methodology for the comparison between field measurement and model output is detailed. This involves a comparison between conventional goodness‐of‐fit approaches applied to a spatially structured (riffle and pool) sample of model and field data, and a ‘relaxation’ method based upon the spatial semivariance of model/field departures. Conventional assessment indicates that the model predicts point‐by‐point velocity characteristics on a 0·45 m mesh to within ±0·1 m s−1 over 80% of the channel area at low flow, and 50% of the area at high in‐bank flow. When a relative criterion of model fit is used, however, the model appears to perform less well: 60–70% of channel area has predicted velocities that depart from observed velocities by more than 10%. Regression analysis of observed and predicted velocities gives more cause for optimism, but all of these conventional indicators of goodness of fit neglect important spatial characteristics of model performance. Spatial semivariance is a means of supplementing model appraisal in this respect. In particular, using the relaxation approach, results are greatly improved: at a high in‐bank flow, the model results match field measurements to within 0·1 m s−1 for more than 95% of the total channel area, provided that model and field comparisons are allowed within a radius of approximately 1 m from the original point of measurement. It is suggested that this revised form of model assessment is of particular relevance to eco‐hydraulic applications, where some degree of spatial and temporal dynamism (or uncertainty) is a characteristic. The approach may also be generalized to other environmental science modelling applications where the spatial attributes of model fits are of interest. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号