首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5765篇
  免费   227篇
  国内免费   89篇
测绘学   168篇
大气科学   549篇
地球物理   1446篇
地质学   1994篇
海洋学   550篇
天文学   753篇
综合类   22篇
自然地理   599篇
  2021年   59篇
  2020年   64篇
  2019年   86篇
  2018年   124篇
  2017年   116篇
  2016年   157篇
  2015年   145篇
  2014年   202篇
  2013年   323篇
  2012年   242篇
  2011年   263篇
  2010年   191篇
  2009年   304篇
  2008年   285篇
  2007年   262篇
  2006年   220篇
  2005年   188篇
  2004年   196篇
  2003年   189篇
  2002年   181篇
  2001年   134篇
  2000年   136篇
  1999年   113篇
  1998年   108篇
  1997年   93篇
  1996年   85篇
  1995年   85篇
  1994年   75篇
  1993年   63篇
  1992年   65篇
  1991年   69篇
  1990年   66篇
  1989年   61篇
  1988年   58篇
  1987年   65篇
  1986年   43篇
  1985年   73篇
  1984年   80篇
  1983年   72篇
  1982年   65篇
  1981年   76篇
  1980年   63篇
  1979年   57篇
  1978年   39篇
  1977年   54篇
  1976年   63篇
  1975年   46篇
  1974年   56篇
  1973年   47篇
  1972年   25篇
排序方式: 共有6081条查询结果,搜索用时 15 毫秒
951.
We present a multi‐chronometric approach for reconstructing deep‐time thermal histories using southern Baffin Island as a case study. This continuous thermal history begins with the Palaeoproterozoic Trans‐Hudson Orogeny and is derived from inverse and forward models that integrate thermochronometers spanning some 500°C: new apatite U–Pb ages and K‐feldspar 40Ar/39Ar multi‐diffusion domain data, published (U–Th)/He zircon ages and new multi‐kinetic fission‐track results. Integration of data from a wider temperature range reduces ambiguities in thermal‐history modelling and permits us to constrain the timing of geological processes including, extended post‐orogenic cooling, enhanced later Proterozoic cooling, and then episodic burial and exhumation in the Palaeozoic–Mesozoic.  相似文献   
952.
Flood hazard maps at trans‐national scale have potential for a large number of applications ranging from climate change studies, reinsurance products, aid to emergency operations for major flood crisis, among others. However, at continental scales, only few products are available, due to the difficulty of retrieving large consistent data sets. Moreover, these are produced at relatively coarse grid resolution, which limits their applications to qualitative assessments. At finer resolution, maps are often limited to country boundaries, due to limited data sharing at trans‐national level. The creation of a European flood hazard map would currently imply a collection of scattered regional maps, often lacking mutual consistency due to the variety of adopted approaches and quality of the underlying input data. In this work, we derive a pan‐European flood hazard map at 100 m resolution. The proposed approach is based on expanding a literature cascade model through a physically based approach. A combination of distributed hydrological and hydraulic models was set up for the European domain. Then, an observed meteorological data set is used to derive a long‐term streamflow simulation and subsequently coherent design flood hydrographs for a return period of 100 years along the pan‐European river network. Flood hydrographs are used to simulate areas at risk of flooding and output maps are merged into a pan‐European flood hazard map. The quality of this map is evaluated for selected areas in Germany and United Kingdom against national/regional hazard maps. Despite inherent limitations and model resolution issues, simulated maps are in good agreement with reference maps (hit rate between 59% and 78%, critical success index between 43% and 65%), suggesting strong potential for a number of applications at the European scale. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
953.
Metamorphic garnet commonly contains needle‐like rutile inclusions as well as equant rutile inclusions that surround quartz inclusions and range in size from submicrometer to nanometer. Although the origin of these equant rutile inclusions, that is, exsolution or non‐exsolution, has important implications for petrological and tectonic processes, the crystallographic characteristics of these inclusions have rarely been studied because of the small sizes and analytical difficulties involved. Here, we report the crystallographic characteristics pertinent to the genetic origin of minute equant rutile inclusions in cloudy, nearly spherically shaped garnet domains with Ti‐depleted compositions surrounding quartz inclusions in ultrahigh‐pressure garnet from several diamondiferous Erzgebirge quartzofeldspathic gneissic rock samples. TEM analyses show that the equant rutile crystals in cloudy garnet domains are partially bounded by the low‐energy {100}rt ± {110}rt ± {101}rt facets and have rather random crystallographic orientation relationships (CORs) with the garnet host, with preferential alignment of low‐energy lattice planes, for example, {100}rt//{112}grt, for some rutile crystals. Although the rather random CORs are unlikely to be attributed to solid‐state exsolution subjected to the stringent topotactic garnet lattice constraints, the characteristic subhedral {100}rt ± {110}rt ± {101}rt crystal forms of rutile can be rationalized by a metasomatic dissolution‐reprecipitation mechanism via a fluid phase. In this scenario, the quartz+fluid inclusions in garnet were first subjected to decompression microcracking during rock exhumation, followed by dissolution of Ti‐bearing garnet matrix at the crack tips or along the crack surfaces and subsequent reprecipitation of rutile, apatite, gahnite, akdalaite, and Ti‐depleted garnet. The rapid coalescence between rutile and garnet crystals in fluid or direct attachment of rutile crystals onto the dissolving crack surfaces would then yield the rather random CORs as reported here. These results, along with previous work on rutile needles, indicate rather diverse genesis of rutile inclusions in various crystal forms, thus shedding light on the controversial exsolution origin for other inclusion suite/microstructure in minerals.  相似文献   
954.
Continuing long and extensive wildfire seasons in the Western US emphasize the need for better understanding of wildfire impacts including post-fire management scenarios. Advancements in our understanding of post-fire hillslope erosion and watershed response such as flooding, sediment yield, and debris flows have recently received considerable attention. The potential impacts of removing dead trees, called salvage logging, has been studied, however the use of remotely sensed imagery after salvage logging to evaluate spatial patterns and recovery is novel. The 2015 North Star Fire provided an opportunity to evaluate hillslope erosion reduction using two field experiments and coincidental remotely sensed imagery over 3 years. Simulated rill experiments with four flow rates were used to quantify hillslope erosion on skidder trails with and without added logging slash compared with a burned-only control. Seven replicated hillslope silt fence plots with the same treatments were also evaluated for natural rainfall events. WorldView-2 satellite imagery was used to relate ground cover and erodible bare soil between the two experiments using multi-temporal Normalized Differenced Vegetation Index (NDVI) values. Results indicate that the skid trails produced significantly more sediment (0.70 g s−1) than either the slash treated skid trail (0.34 g s−1) or controls (0.04 g s−1) with the simulated rill experiment. Similarly, under natural rainfall conditions sediment yield from hillslope silt fence plots was significantly greater for the skid trail (3.42 Mg ha−1) than either the slash treated skid trail (0.18 Mg ha−1) or controls (0 Mg ha−1). An NDVI value of 0.32 on all plots over all years corresponded to a ground cover of about 60% which is an established threshold for erosion reduction. Significant relationships between NDVI, ground cover, and sediment values suggest that NDVI may help managers evaluate ground cover and erosion potential remotely after disturbances such as a wildfire or salvage logging.  相似文献   
955.
Stable isotopes and trace elements in ostracod shells have been used widely in paleolimnological investigations of past lake hydrochemistry and climate because they provide insights into past water balance and solute evolution of lakes. Regional differences in lake characteristics and species-specific element fractionation, however, do not permit generalization of results from other regions or ostracod species to the southern Tibetan Plateau, in part because most common taxa from the southern Tibetan Plateau are endemic to the area. This study evaluated relations between present-day environmental conditions and the geochemical composition of modern ostracod shells from the southern Tibetan Plateau, to assess the suitability of using shell chemistry to infer hydrological conditions. We studied nine lakes and their catchments, located along a west–east transect in the south-central part of the Tibetan Plateau. Stable oxygen and carbon isotope values and trace element concentrations in recent shells from the four most abundant ostracod species (Leucocytherella sinensis, ?Leucocythere dorsotuberosa, Limnocythere inopinata, Tonnacypris gyirongensis) were measured, together with hydrochemical properties of host waters at the time of sampling. Results revealed significant between-species differences in stable isotope fractionation and trace element incorporation into shell calcite. Stable oxygen and carbon isotope values of ostracod shells were correlated significantly with the stable isotope composition of the respective water body \( \left( {\updelta^{18} {\text{O}}_{{{\text{H}}_{ 2} {\text{O}}}} \,{\text{and }}\updelta^{13} {\text{C}}_{{{\text{H}}_{ 2} {\text{O}}}} } \right) \), reflecting salinity and productivity, respectively. Offsets between δ18Oshell and δ13Cshell and inorganic calcite, the latter representing isotopic equilibrium, suggest shell formation of T. gyirongensis during spring melt. L. sinensis reproduces throughout the monsoon season until September and shows several consecutive generations, and L. inopinata molts to the adult stage after the monsoon season in August/September. The influence of pore water δ13C was displayed by L. inopinata, suggesting shell calcification within the sediment. Mg/Cashell is primarily influenced by water Mg/Ca ratios and salinity and confirms the use of this shell ratio as a proxy for precipitation-evaporation balance and lake level. In addition, Sr/Ca and Ba/Ca can be used to infer changes in salinity, at least in closed-basin lakes with calcite saturation. Observed effects of water Sr/Ca and salinity on Sr/Ca incorporation are biased by the presence of aragonite precipitation in the lakes, which removes bioavailable Sr from the host water, resulting in low Sr/Cashell values. Changes in carbonate mineralogy affect the bioavailability of trace elements, a process that should be considered in paleoclimate reconstructions. Oxygen isotopes and Mg/Cashell ratios were unaffected by water temperature. Positive correlations among Fe/Ca, Mn/Ca and U/Ca in ostracod shells, and their negative correlation with δ13C, which reflects organic matter decay, show the potential to infer changes in redox conditions that can be used to reconstruct past oxygen supply to bottom waters and thus past water-circulation changes within lakes. The intensity of microbial activity, associated with organic matter decomposition, can be inferred from U/Ca ratios in ostracod shells. These findings highlight the value of fossil ostracod records in lake deposits for inferring paleoenvironmental conditions on the southern Tibetan Plateau.  相似文献   
956.
957.
The deformational behaviour of ‘salt giants’ during and shortly after their deposition is difficult to decipher in ocean margin settings where the original evaporites have been deeply buried and strongly mobilized. Here, we examine seismic reflection data from the Red Sea, where evaporites deposited until the end of the Miocene (~5.3 Ma), are generally covered by only 200–300 m of low‐density sediments and where the presence of an axial spreading centre allows us to observe how they have responded to a varied configuration of underlying basement. The regional morphology of the S‐reflection, representing the evaporite surface, is mapped out from seismic data from 13 cruises. The S‐reflection is locally rugged and commonly angular. It is either underlain by layered reflectivity, suggestive of layered evaporite beds, or by more transparent seismic character, suggestive of massive halite. On average, the depth of the reflection on the flanks of the axial rift systematically declines from 700 to 1100 m below sea level (mbsl) going northwards from 16 to 23°N. In the central Red Sea, the S‐reflection has 100‐ to 200‐m‐deep depressions, extending towards the coasts in places. In the southern Red Sea, the S‐reflection forms a surface at 300–800 mbsl that appears less disrupted. We suggest that the evaporites originally had a flat, horizontal surface at the end of the Miocene and have subsequently been distorted by isostatic effects and axial rifting, which in turn promoted evaporite flowage. Off‐axis evaporite depressions correspond with flows identified with multibeam sonar. Furthermore, across‐rift lows in Bouguer gravity anomalies represent valleys in the underlying basement. The off‐axis evaporite depressions overlie those valleys, as would be expected if halokinetic movements were greatest where the evaporites are locally thick, leading to deflation of the evaporite surface. The thickness of post‐Miocene sediment, also mapped out as part of this procedure, confirms the generally pelagic nature of this interval and increases on average from ~250 to 300 m from the central to the southern Red Sea, mimicking the variation in pelagic productivity observed in the present water column.  相似文献   
958.
Despite many years of study, the processes involved in the development of the continental margin of southern Africa and the distinctive topography of the hinterland remain poorly understood. Previous thermochronological studies carried out within a monotonic cooling framework have failed to take into account constraints provided by Mesozoic sedimentary basins along the southern margin. We report apatite fission track analysis and vitrinite reflectance data in outcrop samples from the Late Jurassic to Early Cretaceous sedimentary fill of the Oudtshoorn, Gamtoos and Algoa Basins (Uitenhage Group), as well as isolated sedimentary remnants further west, plus underlying Paleozoic rocks (Cape Supergroup) and Permian‐Triassic sandstones from the Karoo Supergroup around the Great Escarpment. Results define a series of major regional cooling episodes. Latest Triassic to Early Jurassic cooling which began between 205 and 180 Ma is seen dominantly in basement flanks to the Algoa and Gamtoos Basins. This episode may have affected a wider region but in most places any effects have been overprinted by later events. The effects of Early Cretaceous (beginning between 145 and 130 Ma) and Early to mid‐Cretaceous (120–100 Ma) cooling are both delimited by major structures, while Late Cretaceous (85–75 Ma) cooling appears to have affected the whole region. These cooling events are all interpreted as dominantly reflecting exhumation. Higher Late Cretaceous paleotemperatures in samples from the core of the Swartberg Range, coupled with evidence for localised Cenozoic cooling, are interpreted as representing Cenozoic differential exhumation of the mountain range. Late Cretaceous paleotemperatures between 60°C and 90°C in outcropping Uitenhage Group sediments from the Oudtshoorn, Gamtoos and Algoa Basins require burial by between 1.2 and 2.2 km prior to Late Cretaceous exhumation. Because these sediments lie in depositional contact with underlying Paleozoic rocks in many places, relatively uniform Late Cretaceous paleotemperatures across most of the region, in samples of both basin fill and underlying basement, suggest the whole region may have been buried prior to Late Cretaceous exhumation. Cenozoic cooling (beginning between 30 and 20 Ma) is focussed mainly in mountainous regions and is interpreted as representing denudation which produced the modern‐day relief. Features such as the Great Escarpment are not related to continental break up, as is often supposed, but are much younger (post‐30 Ma). This history of post‐breakup burial and subsequent episodic exhumation is very different from conventional ideas of passive margin evolution, and requires a radical re‐think of models for development of continental margins.  相似文献   
959.
A combined mineral magnetic and scaled chrysophyte study of lake sediments from Lake Lacawac and Lake Giles in northeastern Pennsylvania was conducted to determine the effects of land-use and sediment source changes on the variation of pH, conductivity, and alkalinity inferred from biotic changes. Ten 30–40 cm long gravity cores were collected from Lake Lacawac and three from Lake Giles. Isothermal remanent magnetizations (IRMs) were given to the lake sediments in a 1.3 T magnetic field to measure magnetic mineral concentration variations. IRM acquisition experiments were conducted to identify magnetic mineralogy. The bedrock, soils and a peat bog on the shores of Lake Lacawac were also sampled for magnetic analysis to determine possible lake sediment sources. The top 10 cm of sediment collected from Lakes Lacawac and Giles was two to four times more magnetic than deeper sediment. 210Pb dating suggests that this intensity increase commenced circa 1900. SEM images of magnetic extracts from the highly magnetic sediments indicates the presence of magnetic fly ash microspheres from fossil fuel burning electric power generation plants. The similarity in magnetic coercivity in the top 8 cm lake sediments and in the peat bog supports an atmospheric source for some of the magnetic minerals in the youngest lake sediments. The highly magnetic sediments also contain an antiferromagnetic mineral in two cores closest to Lake Lacawacs southeastern shore. This magnetic mineral is only present deep in the soil profile and would suggest erosion and significant land-use changes in the Lacawac watershed as another cause for the high magnetic intensities (concentrations) in the top 10 cm of the lake sediments. The most significant changes in the scaled chrysophyte flora occurred immediately above the 10 cm level and were used to infer a doubling of the specific conductivity between circa 1910 and 1929. These variations also support land-use changes in the Lacawac catchment at this time. A similar shift in the scaled chrysophte flora was not observed in the top of Lake Giles, however, distinct changes were found in the deeper sections of the core coupled with a smaller peak in magnetic concentration. Fourier analysis of the 210Pb-dated lake sediment magnetics indicates the presence of a 50 year period, low amplitude variation in the Lake Lacawac, Lake Giles, and Lake Waynewood (Lott et al., 1994) magnetic concentration records. After removal of the land-use/fly ash magnetic concentration peak by Gaussian filtering, the 50 year variation correlates strongly from lake to lake even though the lakes are in different watersheds separated by up to 30 km. When this magnetic variation is compared with Gaussian-filtered rainfall variations observed in New York City and Philadelphia over the past 120–250 years there is a strong correlation suggesting that magnetic concentration variations can record regional rainfall variations with an approximately 50 year period. This result indicates that magnetics could be used to document regional variations in climatic change.  相似文献   
960.
Reconnaissance 18O,, D, and 87Sr data for fifteen lakes in the Western Lakes Region of the Sand Hills of Nebraska indicate dynamic hydrologic systems. The rather narrow range of 87Sr from lake water (1.1 to 2.1) and groundwater (0.9 to 1.7) indicates that the groundwater is generally unradiogenic. Groundwater residence times and relatively unradiogenic volcanic ash within the dune sediments control the 87Sr values. Based on the mutual variations of 18O and D, the lakes can be divided into three groups. In Group 1, both 18O and D values increase from spring to fall. The 18O and D values in Group 2 decreased from spring to fall. Group 3 are ephemeral lakes that went dry some time during 1992. The data and isotopic modeling show that variations in the ratio of evaporation relative to groundwater inflow, local humidity conditions, and the a has substantial influence on the isotopic composition. In addition, isotopic behavior in ephemeral lakes can be rather unusual because of the changing activities of water and mineral precipitation and redissolution. The annual and interannual isotopic variability of these lakes which is reflected in the paleonvironmental indicators may be the rule rather than the exception in these types of systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号