首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   342篇
  免费   2篇
  国内免费   4篇
测绘学   43篇
大气科学   30篇
地球物理   44篇
地质学   104篇
海洋学   6篇
天文学   105篇
综合类   12篇
自然地理   4篇
  2022年   3篇
  2021年   7篇
  2020年   5篇
  2019年   4篇
  2018年   24篇
  2017年   13篇
  2016年   21篇
  2015年   13篇
  2014年   18篇
  2013年   22篇
  2012年   11篇
  2011年   17篇
  2010年   16篇
  2009年   15篇
  2008年   8篇
  2007年   14篇
  2006年   11篇
  2005年   9篇
  2004年   10篇
  2003年   10篇
  2002年   7篇
  2001年   9篇
  2000年   5篇
  1999年   2篇
  1998年   3篇
  1997年   7篇
  1996年   2篇
  1995年   2篇
  1994年   3篇
  1993年   2篇
  1992年   3篇
  1991年   5篇
  1990年   1篇
  1989年   10篇
  1988年   4篇
  1987年   5篇
  1986年   3篇
  1985年   1篇
  1984年   2篇
  1983年   2篇
  1981年   3篇
  1979年   5篇
  1978年   2篇
  1977年   3篇
  1976年   4篇
  1975年   2篇
排序方式: 共有348条查询结果,搜索用时 546 毫秒
31.
-- This work extends the results that Apparao et al. (1997a) obtained for a vertical resistive sheet to the case of inclined resistive sheet models for different electrode arrays. It is found that the depth of investigation (DI) remains the same as that for the vertical target. Using this DI, modified pseudo-depth sections have been constructed over sheet models at different inclinations. It is noted that, for the Wenner array, the maximum anomaly contours fall directly over the target cross section. For dipole-dipole and three-electrode arrays, these contours fall on the up-dip side of the dipping target, with the maximum anomaly contour matching the depth level of the top of the target. It is also observed that the target cross section is at a distance of about 0.33L (L/3) from the maximum anomaly value/contour position for the three-electrode array and 0.25L (L/4) for the dipole-dipole system. These features are identifiable in the individual profiles and may help field geophysicists in the recognition and location of dipping target bodies.  相似文献   
32.
The Simulation of Ground Motions Using Envelope Summations   总被引:2,自引:0,他引:2  
—?The technique of Midorikawa (1993) has been modified to obtain a resultant envelope function at the observation point by placing the rupture causing an earthquake in a layered earth model. The method and its dependency on various modelling parameters are studied in detail. The complete study shows that the generated resultant envelope follows important strong motion characteristics such as directivity and attenuation effects. The simulated resultant envelope is further used for generating synthetic accelerograms by multiplying filtered white noise with the envelope of accelerogram at a particular observation point. Filters through which white noise passes include the effects of geometrical spreading, anelastic attenuation and near-site attenuation at high frequencies.¶Uttarkashi earthquake is among few Indian earthquakes for which strong motion data are available at thirteen different stations. Using the technique presented in this work, envelope function as well as complete acceleration time history during Uttarkashi earthquake has been simulated at these observation points. Comparison of peak acceleration, duration and acceleration response spectra confirms the utility and efficacy of the approach.  相似文献   
33.
The brightness temperatures of the Microwave sensor MSMR (Multichannel Scanning Microwave Radiometer) launched in May 1999 onboard Indian Oceansat-1 IRS-P4 are used to develop a direct retrieval method for latent heat flux by multivariate regression technique. The MSMR measures the microwave radiances at 8 channels at frequencies of 6.6, 10.7, 18 and 21 GHz at both vertical and horizontal polarizations. It is found that the surface LHF (Latent Heat Flux) is sensitive to all the channels. The coefficients were derived using the National Centre for Environmental Prediction (NCEP) reanalysis data of three months: July, September, November of 1999. The NCEP daily analyzed latent heat fluxes and brightness temperatures observed by MSMR were used to derive the coefficients. Validity of the derived coefficients was checked within situ observations over the Indian Ocean and with NCEP analyzed LHF for global points. The LHF derived directly from the MSMR brightness temperature (Tb) yielded an accuracy of 35 watt/m2. LHF was also computed by applying bulk formula using the geophysical parameters extracted from MSMR. In this case the errors were higher apparently due to the errors involved in derivation of the geophysical parameters.  相似文献   
34.
Indian Remote Sensing satellite (IRS)-1B, Linear Imaging Self Scanner (LISS)-II spectral digital data was analysed to determine the feasibility of quantifying the concentration of suspended solids in the surface water of inland water body, Dal lake, in Srinagar, India. The water samples collected in concurrent with IRS-1B overpass, were analysed to determine the concentration of suspended solids. The results indicate that a positive functional relationship exist between the concentration of suspended solids and the visible wave length bands 1 and 3 and near infrared band 4. It has been observed that as the concentration of suspended solids increase, the spectral response also increases. It is concluded that IRS LISS-H data can be effectively used to quantify suspended sediment concentration in the Dal lake surface water.  相似文献   
35.
The sedimentation rates and diffusive sediment mixing coefficients at several Lake Ontario locations have been derived from measurements of unsupported210Pb profiles in sediment cores. The values of mixing coefficients obtained in the present study are significantly lower than those obtained previously through an analysis of porosity profiles. The present estimates, however, are consistent with the rather well-preserved pollutant profiles at some of these locations. It is observed that the more realistic value of the mixing coefficient, obtained by inclusion of the sedimentation rate parameter, follows the sign opposite to that for the constant obtained by regression analysis of the porosity data. Further work is required to delineate this apparent relationship between two important physical characteristics of deposited sediments.Analysis of available suspended sediment data shows that Niagara River supplies about 1.8 million tonnes of sediment annually to Lake Ontario. This value is significantly lower than that (4.6 mt/yr) used previously in constructing sediment and pollutant budgets for Lake Ontario. From the presently derived sedimentation rate and suspended solid discharge estimates, an average value of 441 km2 (range 220-938 km2) is obtained for the minimum area of Lake Ontario over which the Niagara River-supplied fine sediment is deposited.  相似文献   
36.
37.
In recent years, a number of alternative methods have been proposed to predict forest canopy density from remotely sensed data. To date, however, it remains difficult to decide which method to use, since their relative performance has never been evaluated. In this study the performance of: (1) an artificial neural network, (2) a multiple linear regression, (3) the forest canopy density mapper and (4) a maximum likelihood classification method was compared for prediction of forest canopy density using a Landsat ETM+ image. Comparison of confusion matrices revealed that the regression model performed significantly worse than the three other methods. These results were based on a z-test for comparison of weighted kappa statistics, which is an appropriate statistic for analysis of ranked categories. About 89% of the variance of the observed canopy density was explained by the artificial neural networks, which outperformed the other three methods in this respect. Moreover, the artificial neural networks gave an unbiased prediction, while other methods systematically under or over predicted forest canopy density. The choice of biased method could have a high impact on canopy density inventories.  相似文献   
38.
39.
Significant Wave Height (SWH) measurement data from the AltiKa Radar Altimeter (RA) for the first 13 cycles of satellite coverage are compared with the SWH from Wave Rider Buoys (WRB) located at nine stations along the Indian coast to assess the performance of the altimeter over the coastal region. AltiKa SWH observations within a 30-minute interval and 50 km distance from WRBs are found to be over estimated by 6%, the Root Mean Square Error (RMSE) is 0.36 m, the Scatter Index (SI) is 26%, and the correlation coefficient (r) is 0.91. Relaxing the distance criteria by 50 km leads to increase in RMSE and deterioration of r to 0.89. There is a marked difference in the statistics on the comparison pairs pooled separately for the buoys near west and east coasts, with the latter showing RMSE error 26% more than the former. The method of Cressman weights adopted to correct for the errors arising out of the temporal and spatial differences in altimeter and buoy data comparison pairs resulted in reduction of RMSE by 5% and 25%, respectively, for the 30-minute and 50 km criteria and 4% and 56% for the 30-minute and 100 km criteria.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号