首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   985篇
  免费   63篇
  国内免费   13篇
测绘学   51篇
大气科学   154篇
地球物理   220篇
地质学   415篇
海洋学   47篇
天文学   99篇
综合类   2篇
自然地理   73篇
  2023年   6篇
  2022年   7篇
  2021年   23篇
  2020年   29篇
  2019年   24篇
  2018年   53篇
  2017年   29篇
  2016年   54篇
  2015年   35篇
  2014年   49篇
  2013年   64篇
  2012年   53篇
  2011年   63篇
  2010年   54篇
  2009年   79篇
  2008年   58篇
  2007年   43篇
  2006年   50篇
  2005年   45篇
  2004年   38篇
  2003年   32篇
  2002年   16篇
  2001年   18篇
  2000年   16篇
  1999年   12篇
  1998年   19篇
  1997年   11篇
  1996年   7篇
  1995年   8篇
  1994年   5篇
  1993年   8篇
  1992年   4篇
  1991年   5篇
  1990年   2篇
  1989年   4篇
  1987年   5篇
  1985年   1篇
  1984年   3篇
  1983年   3篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1977年   3篇
  1976年   3篇
  1971年   1篇
  1970年   1篇
  1969年   5篇
  1968年   3篇
  1967年   4篇
  1964年   1篇
排序方式: 共有1061条查询结果,搜索用时 15 毫秒
141.
A deeper understanding of how clouds will respond to a warming climate is one of the outstanding challenges in climate science. Uncertainties in the response of clouds, and particularly shallow clouds, have been identified as the dominant source of the discrepancy in model estimates of equilibrium climate sensitivity. As the community gains a deeper understanding of the many processes involved, there is a growing appreciation of the critical role played by fluctuations in water vapor and the coupling of water vapor and atmospheric circulations. Reduction of uncertainties in cloud-climate feedbacks and convection initiation as well as improved understanding of processes governing these effects will result from profiling of water vapor in the lower troposphere with improved accuracy and vertical resolution compared to existing airborne and space-based measurements. This paper highlights new technologies and improved measurement approaches for measuring lower tropospheric water vapor and their expected added value to current observations. Those include differential absorption lidar and radar, microwave occultation between low-Earth orbiters, and hyperspectral microwave remote sensing. Each methodology is briefly explained, and measurement capabilities as well as the current technological readiness for aircraft and satellite implementation are specified. Potential synergies between the technologies are discussed, actual examples hereof are given, and future perspectives are explored. Based on technical maturity and the foreseen near-mid-term development path of the various discussed measurement approaches, we find that improved measurements of water vapor throughout the troposphere would greatly benefit from the combination of differential absorption lidar focusing on the lower troposphere with passive remote sensors constraining the upper-tropospheric humidity.  相似文献   
142.
Lacustrine groundwater discharge (LGD) can substantially impact ecosystem characteristics and functions. Fibre optic distributed temperature sensing (FO‐DTS) has been successfully used to locate groundwater discharge into lakes and rivers at the sediment–water interface, but locating groundwater discharge would be easier if it could be detected from the more accessible water surface. So far, it is not clear if how and under which conditions the LGD signal propagates through the water column to the water surface–atmosphere interface, and what perturbations and signal losses occur along this pathway. In the present study, LGD was simulated in a mesocosm experiment. Under winter conditions, water with temperatures of 14 to 16 °C was discharged at the bottom of a 10 × 2.8‐m mesocosm. Water within this mesocosm ranged from 4.0 to 7.4 °C. Four layers (20, 40, 60, and 80 cm above the sediment) of the 82 cm deep mesocosm were equipped with FO‐DTS for tracing thermal patterns in the mesocosm. Aims are (a) to test whether the positive buoyancy of relatively warm groundwater imported by LGD into shallow water bodies allows detection of LGD at the lake's water surface–atmosphere interface by FO‐DTS, (b) to analyse the propagation of the temperature signal from the sediment‐water interface through the water column, and (c) to learn more about detectability of the signal under different discharge rates and weather conditions. The experiments supported the benchmarking of scale dependencies and robustness of FO‐DTS applications for measuring upwelling into aquatic environments and revealed that weather conditions can have important impacts on the detection of upwelling at water surface–atmosphere interfaces at larger scales.  相似文献   
143.
The known distribution of wind‐blown Vedde Ash (ca. 10.3 ka BP) has been extended to the Karelian Isthmus in northwestern Russia. This has been possible as the result of a density separation technique that separates the rhyolitic Vedde Ash shards from the minerogenic host sediment. The Vedde Ash occurs in the middle of a pollen zone with high percentages of, for example, Artemisia and Chenopodiaceae, suggesting that the Younger Dryas (or GS‐I in the GRIP ice‐core event stratigraphy) was cold and dry throughout its duration. This is in agreement with sites in south Sweden where the Vedde Ash also occurs in the middle of a pollen zone dominated by Artemisia, Chenopodiaceae and Cyperaceae. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   
144.
Tunnel valleys are major features of glaciated margins and they enable meltwater expulsion from underneath a thick ice cover. Their formation is related to the erosion of subglacial sediments by overpressured meltwater and direct glacial erosion. Yet, the impact of pre-existing structures on their formation and morphology remains poorly known. High-quality 3D seismic data allowed the mapping of a large tunnel valley that eroded underlying preglacial delta deposits in the southern North Sea. The valley follows the N–S strike of crestal faults related to a Zechstein salt wall. A change in downstream tunnel valley orientation towards the SE accompanies a change in the strike direction of salt-induced faults. Fault offsets indicate important activity of crestal faults during the deposition of preglacial deltaic sediments. We propose that crestal faults facilitated tunnel valley erosion by acting as high-permeability pathways and allowing subglacial meltwater to reach low-permeability sediments in the underlying Neogene deltaic sequences, ultimately resulting in meltwater overpressure build-up and tunnel valley excavation. Active faults probably also weakened the near-surface sediment to allow a more efficient erosion of the glacial substrate. This control of substrate structures on tunnel valley morphology is considered as a primary factor in subglacial drainage pattern development in the study area.  相似文献   
145.
Proglacial aquifers are an important water store in glacierised mountain catchments that supplement meltwater-fed river flows and support freshwater ecosystems. Climate change and glacier retreat will perturb water storage in these aquifers, yet the climate-glacier-groundwater response cascade has rarely been studied and remains poorly understood. This study implements an integrated modelling approach that combines distributed glacio-hydrological and groundwater models with climate change projections to evaluate the evolution of groundwater storage dynamics and surface-groundwater exchanges in a temperate, glacierised catchment in Iceland. Focused infiltration along the meltwater-fed Virkisá River channel is found to be an important source of groundwater recharge and is projected to provide 14%–20% of total groundwater recharge by the 2080s. The simulations highlight a mechanism by which glacier retreat could inhibit river recharge in the future due to the loss of diurnal melt cycling in the runoff hydrograph. However, the evolution of proglacial groundwater level dynamics show considerable resilience to changes in river recharge and, instead, are driven by changes in the magnitude and seasonal timing of diffuse recharge from year-round rainfall. The majority of scenarios simulate an overall reduction in groundwater levels with a maximum 30-day average groundwater level reduction of 1 m. The simulations replicate observational studies of baseflow to the river, where up to 15% of the 30-day average river flow comes from groundwater outside of the melt season. This is forecast to reduce to 3%–8% by the 2080s due to increased contributions from rainfall and meltwater runoff. During the melt season, groundwater will continue to contribute 1%–3% of river flow despite significant reductions in meltwater runoff inputs. Therefore it is concluded that, in the proglacial region, groundwater will continue to provide only limited buffering of river flows as the glacier retreats.  相似文献   
146.
Both increasing aridity and population growth strongly stress freshwater resources in semi-arid areas such as Jordan. The country’s second largest governorate, Irbid, with over 1 million inhabitants, is already suffering from an annual water deficit of 25 million cubic meters (MCM). The population is expected to double within the next 20 years. Even without the large number of refugees from Syria, the deficit will likely increase to more then 50 MCM per year by 2035 The Governorate’s exclusive resource is groundwater, abstracted by the extensive Al Arab and Kufr Asad well fields. This study presents the first three-dimensional transient regional groundwater flow model of the entire Wadi al Arab to answer important questions regarding the dynamic quality and availability of water within the catchment. Emphasis is given to the calculation and validation of the dynamic groundwater recharge, derived from a multi-proxy approach, including (1) a hydrological model covering a 30-years dataset, (2) groundwater level measurements and (3) information about springs. The model enables evaluation of the impact of abstraction on the flow regime and the groundwater budget of the resource. Sensitivity analyses of controlling parameters indicate that intense abstraction in the southern part of the Wadi al Arab system can result in critical water-level drops of 10 m at a distance of 16 km from the production wells. Moreover, modelling results suggest that observed head fluctuations are strongly controlled by anthropogenic abstraction rather than variable recharge rates due to climate changes.  相似文献   
147.
Karst aquifers represent dual flow systems consisting of a highly conductive conduit system embedded in a less permeable rock matrix. Hybrid models iteratively coupling both flow systems generally consume much time, especially because of the nonlinearity of turbulent conduit flow. To reduce calculation times compared to those of existing approaches, a new iterative equation solver for the conduit system is developed based on an approximated Newton–Raphson expression and a Gauß–Seidel or successive over‐relaxation scheme with a single iteration step at the innermost level. It is implemented and tested in the research code CAVE but should be easily adaptable to similar models such as the Conduit Flow Process for MODFLOW‐2005. It substantially reduces the computational effort as demonstrated by steady‐state benchmark scenarios as well as by transient karst genesis simulations. Water balance errors are found to be acceptable in most of the test cases. However, the performance and accuracy may deteriorate under unfavorable conditions such as sudden, strong changes of the flow field at some stages of the karst genesis simulations.  相似文献   
148.
We estimate the corner frequencies of 20 crustal seismic events from mainshock–aftershock sequences in different tectonic environments (mainshocks 5.7 < M W < 7.6) using the well-established seismic coda ratio technique (Mayeda et al. in Geophys Res Lett 34:L11303, 2007; Mayeda and Malagnini in Geophys Res Lett, 2010), which provides optimal stability and does not require path or site corrections. For each sequence, we assumed the Brune source model and estimated all the events’ corner frequencies and associated apparent stresses following the MDAC spectral formulation of Walter and Taylor (A revised magnitude and distance amplitude correction (MDAC2) procedure for regional seismic discriminants, 2001), which allows for the possibility of non-self-similar source scaling. Within each sequence, we observe a systematic deviation from the self-similar \( M_{0} \propto \mathop f\nolimits_{\text{c}}^{ - 3} \) line, all data being rather compatible with \( M_{0} \propto \mathop f\nolimits_{\text{c}}^{ - (3 + \varepsilon )} \) , where ε > 0 (Kanamori and Rivera in Bull Seismol Soc Am 94:314–319, 2004). The deviation from a strict self-similar behavior within each earthquake sequence of our collection is indicated by a systematic increase in the estimated average static stress drop and apparent stress with increasing seismic moment (moment magnitude). Our favored physical interpretation for the increased apparent stress with earthquake size is a progressive frictional weakening for increasing seismic slip, in agreement with recent results obtained in laboratory experiments performed on state-of-the-art apparatuses at slip rates of the order of 1 m/s or larger. At smaller magnitudes (M W < 5.5), the overall data set is characterized by a variability in apparent stress of almost three orders of magnitude, mostly from the scatter observed in strike-slip sequences. Larger events (M W > 5.5) show much less variability: about one order of magnitude. It appears that the apparent stress (and static stress drop) does not grow indefinitely at larger magnitudes: for example, in the case of the Chi–Chi sequence (the best sampled sequence between M W 5 and 6.5), some roughly constant stress parameters characterize earthquakes larger than M W ~ 5.5. A representative fault slip for M W 5.5 is a few tens of centimeters (e.g., Ide and Takeo in J Geophys Res 102:27379–27391, 1997), which corresponds to the slip amount at which effective lubrication is observed, according to recent laboratory friction experiments performed at seismic slip velocities (V ~ 1 m/s) and normal stresses representative of crustal depths (Di Toro et al. in Nature in press, 2011, and references therein). If the observed deviation from self-similar scaling is explained in terms of an asymptotic increase in apparent stress (Malagnini et al. in Pure Appl Geophys, 2014, this volume), which is directly related to dynamic stress drop on the fault, one interpretation is that for a seismic slip of a few tens of centimeters (M W ~ 5.5) or larger, a fully lubricated frictional state may be asymptotically approached.  相似文献   
149.
Sediment distribution is investigated applying grain size analysis to 279 surface samples from the transitional zone between high mountains (Qilian Shan) and their arid forelands (Hexi Corridor) in north‐western China. Six main sediment types were classified. Medium scale (103 m) geomorphological setting is carefully considered as it may play an important role concerning sediment supply and availability. A tripartite distribution of sedimentological landscape units along the mountain to foreland transition is evident. Aeolian sediments (e.g. loess and dune sands) are widespread. They are used to identify aeolian transport pathways. The mU/fS‐ratio (5–11 µm/48–70 µm) among primary loess opposes the two grain size fractions being most sensitive to varying accumulation conditions. The first fraction is attributed to long‐distance transport in high suspension clouds whereas the latter represents local transport in saltation mode. The ratio shows strong correlation with elevation (R2 = 0.77). Thus, it indicates a relatively higher far‐traveled dust supply in mountainous areas (>3000 m above sea level [a.s.l.]) compared to the foreland. The contribution of westerlies to high mountain loess deposits is considered likely. Hereby, the influence of the geomorphological setting on grain size composition of aeolian sediments becomes apparent: the contribution from distant dust sources is ubiquitous in the study area. However, the far‐distance contribution may be reduced by the availability of fine sand provided in low topography settings. Plain foreland areas support fine sand deflation from supplying river beds, allowing the formation of sandy loess in foreland areas and intramontane basins. In contrast, high mountain topography inhibits strong sand deflation into loess deposits. Eastern parts of the Hexi Corridor show higher aeolian sand occurrence. In contrast, the western parts are dominated by gravel gobi surfaces. This is attributed to higher sand supply in eastern parts provided by the Badain Jaran Desert and fluvial storages as sand sources. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
150.
Feldspar megacrysts from the Weinsberg granite (Moldanubian Zone) show oscillatory zoning with respect to the albite- and orthoclase components. All growth zones show perthitic exsolutions which take the form of bleb- and lens shaped albite-rich precipitates in an orthoclase-rich host. The average sizes and shapes of the precipitates show systematic variation with the integrated bulk compositions of the respective growth zones. The precipitates are abundant and relatively small in growth zones with intermediate bulk composition (Or50Ab41An09 - Or80Ab18An02), and they are less abundant and larger in more orthoclase-rich zones (Or88Ab11An01). Small precipitates have a relatively high aspect ratio, whereas the large precipitates in the potassium-rich zones are more spherical. The relation between microstructure and integrated bulk composition suggests that exsolution and subsequent growth and coarsening occurred by different mechanisms in the respective growth zones. Numerical modeling shows that rapid growth of precipitates over extended periods of time and attainment of relatively large final size is favored, if only few nuclei are formed in an oversaturated host. In contrast, precipitates can grow rapidly only over limited time intervals and remain relatively small, if abundant nuclei are present. During cooling of the oscillatorily zoned alkali-feldspar, exsolution started at relatively high temperatures in growth zones of intermediate integrated bulk composition as compared to exsolution in the more orthoclase-rich growth zones. Irrespective of whether exsolution occurred by spinodal decomposition or by nucleation at relatively high temperatures in the growth zones of intermediate integrated bulk composition, it produced abundant nuclei and resulted in relatively small precipitates. In contrast, comparatively few nuclei were formed in the orthoclase-rich growth zones resulting in large precipitates. The Na/K partitioning between precipitates and the host is independent of the integrated bulk composition of the respective growth zone reflecting re-equilibration during cooling down to relatively low temperatures (<?400°C). The shape of the precipitates probably has evolved from an initially lamellar or spindle-like geometry with high aspect ratio to more isometric, spheroidal shapes during precipitate growth and coarsening. Host/precipitate interfaces served as fluid pathways during late stage deuteric alteration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号