首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   180篇
  免费   8篇
  国内免费   3篇
大气科学   19篇
地球物理   48篇
地质学   45篇
海洋学   45篇
天文学   24篇
自然地理   10篇
  2024年   1篇
  2023年   1篇
  2021年   4篇
  2020年   7篇
  2019年   6篇
  2018年   4篇
  2017年   1篇
  2016年   9篇
  2015年   8篇
  2014年   12篇
  2013年   3篇
  2012年   10篇
  2011年   10篇
  2010年   9篇
  2009年   11篇
  2008年   14篇
  2007年   7篇
  2006年   11篇
  2005年   6篇
  2004年   6篇
  2003年   7篇
  2002年   4篇
  2001年   4篇
  2000年   5篇
  1999年   3篇
  1998年   2篇
  1997年   3篇
  1996年   2篇
  1995年   3篇
  1994年   4篇
  1993年   3篇
  1989年   4篇
  1988年   1篇
  1986年   2篇
  1985年   1篇
  1982年   1篇
  1977年   2篇
排序方式: 共有191条查询结果,搜索用时 46 毫秒
91.
Analysis of fault system in the high-P/T type Sambagawa metamorphic rocks of central Shikoku, southwest Japan, shows that conjugate normal faults pervasively developed in the highest-grade biotite zone (upper structural level) in three study areas (Asemi river, Oriu and Niihama areas). These conjugate normal faults consist of NE–SW to E–W striking and moderately north-dipping (set A), and NNW–SSE striking and moderately east dipping (set B) faults. The fault set A is dominant compared to the fault set B, and hence most of deformation is accommodated by the fault set A, leading to non-coaxial deformation. The sense of shear is inferred to be a top-to-the-WNW to NNW, based on the orientations of striation or quartz slickenfibre and dominant north-side down normal displacement. These transport direction by normal faulting is significantly different from that at D1 penetrative ductile flow (i.e. top-to-the-W to WNW). It has also been found that these conjugate normal faults are openly folded during the D3 phase about the axes trending NW–SE to E–W and plunging west at low-angles or horizontally, indicating that normal faulting occurred at the D2 phase. D2 normal faults, along which actinolite breccia derived from serpentinite by metasomatism sometimes occurs, perhaps formed under subgreenschist conditions (ca. 250 °C) in relation to the final exhumation of Sambagawa metamorphic rocks into the upper crustal level. The pervasive development of D2 normal faults in the upper structural level suggests that the final exhumation of Sambagawa metamorphic rocks could be caused by “distributed extension and normal faulting (removal of overburden)” in the upper crust.  相似文献   
92.
93.
Greenstone bodies emplaced upon or into clastic sediments crop out ubiquitously in the Hidaka belt (early Paleogene accretionary and collisional complexes exposed in the central part of northern Hokkaido, NE Japan), but the timing and setting of their emplacement has remained poorly constrained. Here, we report new zircon U–Pb ages for the sedimentary complexes surrounding these greenstones. The Hidaka Supergroup in the northern Hidaka belt is divided into four zones from west to east: zones S, U, and R, which contain in situ greenstones; and zone Y, which does not. Detrital zircons in zones S, U, and R have early Eocene U–Pb ages (55–47 Ma) and these strata are intruded by early Eocene granites (46–45 Ma), indicating that they were deposited between 55 and 46 Ma. Therefore, in situ greenstones in the northern Hidaka belt can only be explained by the subduction of the Izanagi–Pacific Ridge during 55–47 Ma. In contrast, the deposition of zone Y (the Yubetsu Group, younging to the west) began by 73–71 Ma, indicating that the accretionary prism in front of the paleo-Kuril arc formed at the same time as that in the Idonnappu zone and grew continuously until 48 Ma. The plutonic rocks that intruded the Hidaka belt are roughly divided into three stages: (1) early Eocene granites intruded the northern Hidaka belt at 46–45 Ma, during subduction of the Izanagi–Pacific Ridge; (2) the upper sequence of the Hidaka metamorphic zone was metamorphosed by magmatism at 40–37 Ma associated with the collision of the paleo-Kuril arc and NE Asia; and (3) younger granites intruded the entire Hidaka belt at 20–17 Ma in association with asthenospheric upwelling caused by back-arc expansion.  相似文献   
94.
The biological pump is a central process in the ocean carbon cycle, and is a key factor controlling atmospheric carbon dioxide (CO2). However, whether the Arctic biological pump is enhanced or reduced by the recent loss of sea ice is still unclear. We examined if the effect was dependent on ocean circulation. Melting of sea ice can both enhance and reduce the biological pump in the Arctic Ocean, depending on ocean circulation. The biological pump is reduced within the Beaufort Gyre in the Canada Basin because freshwater accumulation within the gyre limits nutrient supply from deep layers and shelves hence inhibits the growth of large-bodied phytoplankton. Conversely, the biological pump is enhanced outside the Beaufort Gyre in the western Arctic Ocean because of nutrient supply from shelves and greater light penetration, enhancing photosynthesis, caused by the sea ice loss. The biological pump could also be enhanced by sea ice loss in the Eurasian Basin, where uplifted isohaline surfaces associated with the Transpolar Drift supply nutrients upwards from deep layers. New data on nitrate uptake rates are consistent with the pattern of enhancement and reduction of the Arctic biological pump. Our estimates indicate that the enhanced biological pump can be as large as that in other oceans when the sea ice disappears. Contrary to a recent conclusion based on data from the Canada Basin alone, our study suggests that the biological CO2 drawdown is important for the Arctic Ocean carbon sink under ice-free conditions.  相似文献   
95.
Bengal Fan Miocene sediments were collected during International Ocean Discovery Program Expedition 354 and investigated using petrographic and detrital garnet chemistry analyses. The Miocene Siwalik Group, which is composed of sediments deposited in the Himalayan foreland basin, was also analyzed for comparison with the Bengal Fan data for the provenance change during the Miocene. Our petrographic analyses revealed that the Miocene sediments of the Bengal Fan and Siwalik Group consist predominantly of Higher Himalayan Crystalline (HHC)-derived detritus such as chloritoid, staurolite, sillimanite, and/or kyanite, which appear among the accessory minerals. The chemistry of the detrital garnet varies across the stratigraphy; most of the garnet is rich in almandine and poor in spessartine and pyrope. However, pyrope-rich garnet, which is considered to originate from the HHC core (granulite facies), was found in the lower to upper Miocene deposits. The deposition of HHC-derived detrital garnet began before the Middle Miocene (15 Ma) and before the Late Miocene (10–9 Ma) in the Siwalik Group. The Bengal Fan data, by contrast, indicated that pyrope-rich garnet appeared in the Early Miocene (17.3 Ma) and Late Miocene (8.5–6.5 Ma). We conclude that the Bengal Fan sediments record the erosion of the HHC zone since the Early Miocene that appears in the Siwalik sediments. Furthermore, we found that the HHC-derived inputs decreased from the late Middle Miocene (12 Ma) to the early Middle Miocene (10 Ma) in both the Nepal Himalaya foreland basin and the Bengal Fan. The disappearance of the HHC-derived detritus is probably the result of dilution by Lesser Himalayan detritus, which suggests that the Lesser Himalayan zone, which is composed of metamorphosed and unmetamorphosed sedimentary rocks, was uplifted.  相似文献   
96.
97.
An improved cloud tracking method for deriving wind velocities from successive planetary images was developed. The new method incorporates into the traditional cross-correlation method an algorithm that corrects for erroneous cloud motion vectors by re-determining the most plausible correlation peak among all of the local maxima on the correlation surface by comparing each vector with its neighboring vectors. The newly developed method was applied to the Venusian violet images obtained by the Solid State Imaging system (SSI) onboard the Galileo spacecraft during its Venus flyby. Although the results may be biased by the choice of spatial scale of atmospheric features, the cloud tracking is the most practical mean of estimating the wind velocities with extensive spatial and temporal coverage. The two-dimensional distribution of the horizontal wind vector field over 5 days was obtained. It was found from these wind maps that the solar-fixed component in 1990 was similar to that in 1982 obtained by the Pioneer Venus orbiter. The deviation of the instantaneous zonal wind field from the solar-fixed component shows a distinct wavenumber-1 structure in the equatorial region. On the assumption that this structure is a manifestation of an equatorial Kelvin wave, the phase relationship between the zonal wind and the cloud brightness suggests a short photochemical lifetime of the violet absorber. The momentum deposition by this Kelvin wave, which is subject to radiative damping, would induce a westward mean-wind acceleration of ~0.3 m s?1 per Earth day.  相似文献   
98.
Marine mammals in the past mass mortality events may have been susceptible to infection because their immune systems were suppressed through the bioaccumulation of environmental pollutants such as polychlorinated biphenyls (PCBs). We compiled mortality event data sets of 33 marine mammal species, and employed a Finely-Advanced Transboundary Environmental model (FATE) to model the exposure of the global fish community to PCB congeners, in order to define critical exposure levels (CELs) of PCBs above which mass mortality events are likely to occur. Our modelling approach enabled us to describe the mass mortality events in the context of exposure of higher-trophic consumers to PCBs and to identify marine pollution ‘hotspots’ such as the Mediterranean Sea and north-western European coasts. We demonstrated that the CELs can be applied to quantify a chemical pollution Planetary Boundary, under which a safe operating space for marine mammals and humanity can exist.  相似文献   
99.
Widespread definition of a groundwater system in three dimensions is necessary for the management and maintenance of groundwater resources. A magnetotelluric (MT) survey can be an effective geophysical prospecting method for imaging regional geological structures by measuring both shallow and deep resistivity. To demonstrate the capability of an MT survey to characterize a groundwater system, the Kumamoto area of central Kyushu in southwestern Japan was selected as a case study site because of its rich groundwater resources. Three-dimensional (3D) MT resistivity structure to a depth of 5?km was modeled by 1D inversion analysis of raw MT data and 3D interpolation of the resultant resistivity column data by the optimization principle method. Consequently, both deep and shallow aquifers were detected. A high-resistivity zone appears at depths between 500 and 2,000?m between the Futagawa?CHinagu faults and the Usuki?CYatsushiro tectonic line, which supports the existence of an aquiclude under the aquifer. The most important characteristic inferred from the 3D resistivity model is that the deep groundwater system below a depth of 1,000?m has two main flow paths. One path is likely to be through porous rocks because the low resistivity zone is regarded as tuff with sand and gravel, and the other flow path is interpreted to be through fractured zones along the Hinagu faults. Hence, the path and direction of the groundwater flows are probably controlled by geologic structures and the configuration of the active faults. These findings support the effectiveness of the MT method for investigating groundwater systems.  相似文献   
100.
We estimate detailed three-dimensional seismic velocity structures in the subducting Pacific slab beneath Hokkaido, Japan, using a large number of arrival-time data from 6902 local earthquakes. A remarkable low-velocity layer with a thickness of ~ 10 km is imaged at the uppermost part of the slab and is interpreted as hydrated oceanic crust. The layer gradually disappears at depths of 70–80 km, suggesting the breakdown of hydrous minerals there. We find prominent low-velocity anomalies along the lower plane of the double seismic zone and above the aftershock area of the 1993 Kushiro-oki earthquake (M7.8). Since seismic velocities of unmetamorphosed peridotite are much higher than the observations, hydrous minerals are expected to exist in the lower plane as well as the hypocentral area of the 1993 earthquake. On the other hand, regions between the upper and lower planes, where seismic activity is not so high compared to the both planes, show relatively high velocities comparable to those of unmetamorphosed peridotite. Our observations suggest that intermediate-depth earthquakes occur mainly in regions with hydrous minerals, which support dehydration embrittlement hypothesis as a cause of earthquake in the subducting slab.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号