首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
A full‐scale 5‐story steel moment frame building was subjected to a series of earthquake excitations using the E‐Defense shake table in August, 2011. For one of the test configurations, the building was seismically isolated by a hybrid system of lead‐rubber bearings and low friction roller bearings known as cross‐linear bearings, and was designed for a very rare 100 000‐year return period earthquake at a Central and Eastern US soil site. The building was subject to 15 trials including sinusoidal input, recorded motions and simulated earthquakes, 2D and 3D input, and a range of intensities including some beyond the design basis level. The experimental program was one of the first system‐level full‐scale validations of seismic isolation and the first known full‐scale experiment of a hybrid isolation system incorporating lead‐rubber and low friction bearings. Stable response of the hybrid isolation system was demonstrated at displacement demands up to 550 mm and shear strain in excess of 200%. Torsional amplifications were within the new factor stipulated by the code provisions. Axial force was observed to transfer from the lead‐rubber bearings to the cross‐linear bearings at large displacements, and the force transfer at large displacements exceeded that predicted by basic calculations. The force transfer occurred primarily because of the flexural rigidity of the base diaphragm and the larger vertical stiffness of the cross‐linear bearings relative to the lead‐rubber bearings.  相似文献   

2.
A new isolation interface is proposed in this study to retrofit existing buildings with inadequate soft stories as well as new structures to be constructed with soft first story intended for architectural or functional purposes. The seismic interface is an assembly of bearings set in parallel on the top of the first story columns: the multiple‐slider bearings and rubber bearings. The multiple‐slider bearing is a simple sliding device consisting of one horizontal and two inclined plane sliding surfaces based on polytetrafluoroethylene and highly polished stainless steel interface at both ends set in series. A numerical example of a five‐story reinforced concrete shear frame with soft first story is considered and analyzed to demonstrate the efficiency of the proposed isolation system in reducing the ductility demand and damage in the structure while maintaining the superstructure above the bearings to behave nearly in the elastic range with controlled bearing displacement. Comparative study with the conventional system as well as various isolation systems such as rubber bearing interface and resilient sliding isolation is carried out. Moreover, an optimum design procedure for the multiple‐slider bearing is proposed through the trade‐off between the maximum bearing displacement and the first story ductility demand ratio. The results of extensive numerical analysis verify the effectiveness of the multiple‐slider bearing in minimizing the damage from earthquake and protecting the soft first story from excessively large ductility demand. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
This paper investigates numerically the seismic response of six seismically base‐isolated (BI) 20‐story reinforced concrete buildings and compares their response to that of a fixed‐base (FB) building with a similar structural system above ground. Located in Berkeley, California, 2 km from the Hayward fault, the buildings are designed with a core wall that provides most of the lateral force resistance above ground. For the BI buildings, the following are investigated: two isolation systems (both implemented below a three‐story basement), isolation periods equal to 4, 5, and 6 s, and two levels of flexural strength of the wall. The first isolation system combines tension‐resistant friction pendulum bearings and nonlinear fluid viscous dampers (NFVDs); the second combines low‐friction tension‐resistant crosslinear bearings, lead‐rubber bearings, and NFVDs. The designs of all buildings satisfy ASCE 7‐10 requirements, except that one component of horizontal excitation, is used in the 2D nonlinear response history analysis. Analysis is performed for a set of ground motions scaled to the design earthquake and to the maximum considered earthquake (MCE). At both the design earthquake and the MCE, the FB building develops large inelastic deformations and shear forces in the wall and large floor accelerations. At the MCE, four of the BI buildings experience nominally elastic response of the wall, with floor accelerations and shear forces being 0.25 to 0.55 times those experienced by the FB building. The response of the FB and four of the BI buildings to four unscaled historical pulse‐like near‐fault ground motions is also studied. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
New types of fiber‐reinforced rubber‐based seismic isolators have been a research interest for a number of engineers in the past decade. These new types of isolators can have similar seismic performances compared with the conventional ones. In most of the previous researches, the fiber‐reinforced rubber‐based isolators is usually manufactured with placing fiber sheets between precut rubber layers with the use of a bonding agent. This research differs from the previous researches in terms of manufacturing process, use of fiber mesh instead of fiber sheets, and use of lead in the core for some of the bearings. The aim of this research is to provide comparisons in fundamental seismic response properties of the new type of fiber mesh reinforced isolators and conventional isolators. In this scope, four pairs of fiber mesh reinforced elastomeric bearings and four pairs of steel‐reinforced elastomeric bearings are subjected to various levels of compression stresses and cyclic shear strains under constant vertical pressure. The tested types of isolators are fiber mesh reinforced elastomeric bearing, fiber mesh reinforced elastomeric bearing with lead core, steel‐reinforced elastomeric bearings, and steel‐reinforced elastomeric bearings with lead core. In this research, steel‐reinforced bearings are called conventional isolators. The major advantage for fiber mesh reinforced bearings observed during the tests is that these isolators can develop a considerable low horizontal stiffness compared with the conventional isolators. The damping characteristics of the new and conventional types are similar to each other. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
In many applications of seismic isolation, such as in high‐rise construction, lightweight construction, and structures with large height‐to‐width aspect ratios, significant tension forces can develop in bearings, raising concerns about the possible rupture of elastomeric bearings and the uplift of sliding bearings. In this paper, a novel tension‐resistant lead plug rubber bearing (TLRB) with improved tension‐resisting capabilities is developed and experimentally and numerically assessed. This TLRB consists of a common lead plug rubber bearing (LRB) and several helical springs. After describing the theory underlying the behavior of the TLRB, the mechanical properties of reduced‐scale prototype bearings are investigated through extensive horizontal and vertical loading tests. The test results indicate that TLRBs can improve the shear stiffness and tension resistance capacity even under significant tensile loads. A series of shaking table tests on scaled models of high‐rise buildings with different aspect ratios were conducted to investigate the dynamic performance of the TLRB and the seismic responses of base‐isolated high‐rise buildings. Three different cases were considered in the shaking table tests: a fixed base condition and the use of TLRB and LRB isolation systems. The results of the shaking table test show that (a) base‐isolated systems are effective in reducing the structural responses of high‐rise buildings; (b) an isolated structure's aspect ratio is an important factor influencing its dynamic response; (c) TLRBs can endure large tensile stresses and avoid rupture on rubber bearings under strong earthquakes; and (d) the experimental and numerical results of the responses of the models show good agreement. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
For the purpose of accurately predicting the seismic response of base-isolated structures, an analytical hysteresis model for elastomeric seismic isolation bearings is proposed. An extensive series of experimental tests of four types of seismic isolation bearings—two types of high-damping rubber bearings, one type of lead-rubber bearing and one type of silicon rubber bearing—was carried out with the objective of fully identifying their mechanical characteristics. The proposed model is capable of well-predicting the mechanical properties of each type of elastomeric bearing into the large strain range. Earthquake simulator tests were also conducted after the loading tests of the individual bearings. In order to show the validity of the proposed model, non-linear dynamic analyses were conducted to simulate the earthquake simulator test results. Good agreement between the experimental and analytical results shows that the model can be an effective numerical tool to predict not only the peak response value but also the force–displacement relationship of the isolators and floor response spectra for isolated structures. © 1997 by John Wiley & Sons, Ltd.  相似文献   

7.
A comprehensive parametric study on the inelastic seismic response of seismically isolated RC frame buildings, designed for gravity loads only, is presented. Four building prototypes, with 23 m × 10 m floor plan dimensions and number of storeys ranging from 2 to 8, are considered. All the buildings present internal resistant frames in one direction only, identified as the strong direction of the building. In the orthogonal weak direction, the buildings present outer resistant frames only, with infilled masonry panels. This structural configuration is typical of many existing RC buildings, realized in Italy and other European countries in the 60s and 70s. The parametric study is based on the results of extensive nonlinear response‐time history analyses of 2‐DOF systems, using a set of seven artificial and natural seismic ground motions. In the parametric study, buildings with strength ratio (Fy/W) ranging from 0.03 to 0.15 and post‐yield stiffness ratio ranging from 0% to 6% are examined. Three different types of isolation systems are considered, that is, high damping rubber bearings, lead rubber bearings and friction pendulum bearings. The isolation systems have been designed accepting the occurrence of plastic hinges in the superstructure during the design earthquake. The nonlinear response‐time history analyses results show that structures with seismic isolation experience fewer inelastic cycles compared with fixed‐base structures. As a consequence, although limited plastic deformations can be accepted, the collapse limit state of seismically isolated structures should be based on the lateral capacity of the superstructure without significant reliance on its inherent hysteretic damping or ductility capacity. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
滑移摩擦隔震系统在多向地面运动作用下的试验研究   总被引:7,自引:2,他引:7  
基础隔震通常只考虑隔离水平地面运动,而对竖向地面运动的影响注意不够,本文进行了滑移摩擦隔震系统的振动台房屋模型试验,研究多向地面运动输入时上部结构反应和隔震系统的性能,试验中分别对模型输入了不同方向的地震动,其中包括水平单向、水平双向、水平和竖向及三向地震动输入,对试验结果进行了分析比较,结果表明竖向地震动输入对上部结构的水平地震反应有显著影响,同时在橡胶隔震支座中产生了竖向拉力。  相似文献   

9.
The effects of damping in various laminated rubber bearings (LRB) on the seismic response of a ?‐scale isolated test structure are investigated by shaking table tests and seismic response analyses. A series of shaking table tests of the structure were performed for a fixed base design and for a base isolation design. Two different types of LRB were used: natural rubber bearings (NRB) and lead rubber bearings (LLRB). Three different designs for the LLRB were tested; each design had a different diameter of lead plug, and thus, different damping values. Artificial time histories of peak ground acceleration 0.4g were used in both the tests and the analyses. In both shaking table tests and analyses, as expected, the acceleration responses of the seismically isolated test structure were considerably reduced. However, the shear displacement at the isolators was increased. To reduce the shear displacement in the isolators, the diameter of the lead plug in the LLRB had to be enlarged to increase isolator damping by more than 24%. This caused the isolator stiffness to increase, and resulted in amplifying the floor acceleration response spectra of the isolated test structure in the higher frequency ranges with a monotonic reduction of isolator shear displacement. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

10.
为评估隔震和非隔震支座对桥梁地震易损性的影响,以一座3跨连续混凝土箱梁桥为分析对象,首先建立采用铅芯橡胶隔震支座与非隔震型盆式橡胶支座下桥梁的数值模型,求得不同程度地震作用下墩顶与支座的最大位移响应;再定义转角延性比损伤指标,结合支座剪应变,分析桥墩和支座的地震易损性情况;最后通过宽界限法建立全桥地震易损性曲线。研究结果表明,支座是较容易发生损坏的构件,而桥梁系统比桥墩或支座更易发生破坏,同时铅芯橡胶支座的破坏概率明显低于非隔震型盆式支座,可见采用隔震支座能有效减小桥墩墩顶在地震作用下的最大位移,此时桥墩地震易损性优于采用非隔震支座的情况。  相似文献   

11.
A pseudodynamic testing procedure has been applied by which the seismic response of a base‐isolated building is obtained by using as specimen the isolators, while the superstructure is numerically simulated. The procedure also takes advantage of the continuous pseudodynamic testing capabilities of the ELSA laboratory, which increase the accuracy of the results and reduce the strain‐rate effect of the rubber bearings. A simple proportional correction of the measured forces compensates the remaining strain‐rate effect due to the unrealistic speed of the test. The correction factor is obtained by means of a characterizing test on the specific rubber isolators. The developed method has been successfully applied to the prediction of the seismic response of a base‐isolated four‐storey building submitted to several specified accelerograms. The results for those earthquakes as well as the effects of some changes of the parameters of the system are discussed. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

12.
A procedure for the dynamic identification of the physical parameters of coupled base isolation systems is developed in the time domain. The isolation systems considered include high damping rubber bearings (HDRB) and low friction sliding bearings (LFSB). A bi‐linear hysteretic model is used alone or in parallel with a viscous damper to describe the behavior of the HDRB system, while a constant Coulomb friction device is used to model the LFSB system. After deriving the analytical dynamical solution for the coupled system under an imposed initial displacement, this is used in combination with the least‐squares method and an iterative procedure to identify the physical parameters of a given base isolation system belonging to the class described by the models considered. Performance and limitations of the proposed procedure are highlighted by numerical applications. The procedure is then applied to a real base isolation system using data from static and dynamic tests performed on a building at Solarino. The results of the proposed identification procedure have been compared to available laboratory data and the agreement is within ±10%. However, the need for improvement both in models and testing procedures also emerges from the numerical applications and results obtained. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
组合基础隔震在建筑工程中的应用   总被引:2,自引:1,他引:2  
隔震作为一种新的抗震技术,已广泛应用于新建和加固的建筑工程,同时,许多新型式的支座得到了开发和应用。组合基础隔震是一种新的隔震设计思想,能充分应用不同类型隔震支座的特性,有效降低上部结构地震反应。本文介绍了组合基础隔震在某一工程中的应用,工程中使用的支座包括普通橡胶隔震支座、铅芯橡胶隔震支座和弹性滑板支座三种类型,对全部使用支座进行了常规检测,结构计算采用等效线性法、能量包络法和时程反应分析等方法,计算结果表明:组合基础隔震能有效降低上部结构的反应,隔震层的变形控制在安全范围之内。  相似文献   

14.
Finite element analysis is carried out for a building frame supported by laminated rubber bearings to simultaneously investigate global displacement and local stress responses under seismic excitation. The frame members and the rubber bearings are discretized into hexahedral solid elements with more than 3 million degrees of freedom. The material property of rubber is represented by the Ogden model, and the frame is assumed to remain in elastic range. It is shown that the time histories of non‐uniform stress distribution and rocking behavior of the rubber bearings under a frame subjected to seismic excitation can be successfully evaluated, and detailed responses of base and frame can be evaluated through large‐scale finite element analysis. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
In the conventional seismic design of high‐rise reinforced concrete core‐wall buildings, the design demands such as design shear and bending moment in the core wall are typically determined by the response spectrum analysis procedure, and a plastic hinge is allowed to form at the wall base to limit the seismic demands. In this study, it is demonstrated by using a 40‐story core‐wall building that this conventional approach could lead to an unsafe design where the true demands—the maximum inelastic seismic demands induced by the maximum considered earthquake—could be several times greater than the design demands and be unproportionately dominated by higher vibration modes. To identify the cause of this problem, the true demands are decomposed into individual modal contributions by using the uncoupled modal response history analysis procedure. The results show that the true demands contributed by the first mode are reasonably close to the first‐mode design demands, while those contributed by other higher modes are much higher than the corresponding modal design demands. The flexural yielding in the plastic hinge at the wall base can effectively suppress the seismic demands of the first mode. For other higher modes, however, a similar yielding mechanism is either not fully mobilized or not mobilized at all, resulting in unexpectedly large contributions from higher modes. This finding suggests several possible approaches to improve the seismic design and to suppress the seismic demands of high‐rise core‐wall buildings. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
A simple procedure for identifying hysteretic properties of seismically isolated bridges from full‐scale quick‐release tests is presented in this paper. An analytical solution for the quick‐release response of a SDOF system with a bilinear spring is derived. Based on the solution, some characteristics of such systems are obtained. A time domain optimization method is employed to identify the hysteretic properties of the lead–rubber bearings installed in seismically isolated bridges. The total damping effects of the isolation system are expressed as a combination of the rate‐independent (hysteretic) damping and the linear viscous damping. The Menegotto–Pinto (MP) model and bilinear model are used to represent the force–displacement relation of the lead–rubber bearings. In both the longitudinal and transverse directions the bridges have been idealized as single degree of freedom (SDOF) systems. Time histories recorded from the field quick‐release tests on two bridges are used for the examples presented herein. The hysteretic loops of the isolators obtained from laboratory tests are compared with those obtained using the optimization method, and they agree well. In conclusion, the procedure shown in this paper can be used to identify the essential in situ hysteretic characteristics of isolation bearings from quick‐release field testing. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

17.
The reinforced concrete frame‐core tube structure is a common form of high‐rise building; however, certain vertical components of these structures are prone to be damaged by earthquakes, debris flow, or other accidents, leaving no time for repair or retrofit. This study is motivated by a practical problem—that is, the seismic vulnerability and collapse resistant capability under future earthquakes when a vertical member has failed. A reduced scale model (1:15 scale) of a typical reinforced concrete frame‐core tube with a corner column removed from the first floor is designed, fabricated, and tested. The corner column is replaced by a jack, and the failure behavior is simulated by manually unloading the jack. The model is then excited by a variety of seismic ground motions on the shaking table. Experimental results concerning the seismic responses and actual process of collapse are presented herein. Finally, the earthquake‐induced collapse process is simulated numerically using the software program ANSYS/LS‐DYNA. Validation and calibration of the model are carried out by comparison with the experimental results. Furthermore, based on both experimental investigations and numerical simulations, the collapse mechanism is discussed, and some suggestions on collapse design are put forward. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
A comprehensive approach is developed to estimate relevant design quantities—lateral deformations and axial forces—in isolation systems composed of lead–rubber bearings. The approach, applicable to symmetric and asymmetric‐plan systems, includes the effects of bidirectional excitation, rocking, and torsion; and is the culmination of previous work on this topic. The approach is based on nonlinear response history analysis of an isolated block using an advanced bearing model that incorporates the interaction between axial force and lateral response of the bearing, known as axial‐load effects. The rocking response of the system and peak axial forces are shown to depend on the isolation period, the normalized strength—or yield strength normalized by peak ground velocity, the ratios of rocking frequency about each horizontal axis to vertical frequency, and the normalized stiffness eccentricity. In an attempt to develop results widely applicable to asymmetric‐plan systems, eccentricity is introduced by varying the stiffnesses and strengths of individual bearings in an idealized, rectangular plan. This idealized system approach is shown to have limited success; when applied to actual asymmetric‐plan systems the design equations to estimate response are accurate for lateral deformations but err by up to 25% for axial forces. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
While isolation can provide significantly enhanced performance compared to fixed‐base counter parts in design level or even maximum considered level earthquakes, there is still uncertainty over the performance of isolation systems in extreme events. Researchers have looked at component level stability of rubber bearings and on the effect of moat impact on behavior of structures isolated on general bilinear isolators. However, testing of triple friction pendulum (TFP) sliding bearings has not been done dynamically or incorporated into a building system. Here, one‐third scale laboratory tests were conducted to on a 2‐story 2‐bay TFP‐isolated structure. Input motions were increasingly scaled until failure occurred at the isolation level. As the superstructure was designed with a yield force equivalent to the force of the bearing just at their ultimate displacement capacity, there was minimal yielding. A numerical model is presented to simulate the isolated building up to and including bearing failure. Forces transferred to the superstructure in extreme motions are examined using both experimental and numerical data. Additionally, the effect of the hardening stage of the TFP bearing is evaluated using the numerical model, finding slight benefits.  相似文献   

20.
The seismic response of light secondary systems in a building is dependent on the response of the primary structural system to the seismic ground motion with the result that very high accelerations can be induced in such secondary systems. This response can be reduced through the use of aseismic base isolation which is a design strategy whereby the entire building can be decoupled from the damaging horizontal components of seismic ground motion by the use of some form of isolation system. The paper presents a theoretical analysis of the response of light equipment in isolated structures and a parallel experimental programme both of which show that the use of base isolation can not only attenuate the response of the primary structural system but also reduce the response of secondary systems. Thus, the design of equipment and piping in a base-isolated building is very much simpler than that for a conventionally founded structure: inelastic response and equipment-structure interaction need not be considered and multiple support response analysis is rendered unnecessary. Although an isolation system with linear elastic bearings can reduce the acceleration of the structure, it may be accompanied by large relative displacements between the structure and the ground. A system using lead-rubber hysteretic bearings, having a force-displacement relation which is approximately a bilinear loop, can reduce these displacements. A parallel experimental programme was carried out to investigate the response of light equipment in structures isolated using lead-rubber bearings. The experimental results show that these bearings can dissipate energy and limit the displacement and acceleration of the structure but are less effective in reducing the accelerations in the internal equipment. The results of both the analysis and the tests show that base isolation is a very effective method for the seismic protection of light equipment items in buildings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号