首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50篇
  免费   1篇
测绘学   2篇
大气科学   1篇
地球物理   1篇
地质学   34篇
海洋学   2篇
自然地理   11篇
  2018年   1篇
  2014年   1篇
  2013年   5篇
  2012年   1篇
  2010年   1篇
  2009年   3篇
  2008年   1篇
  2006年   2篇
  2004年   2篇
  2003年   3篇
  2002年   2篇
  1998年   1篇
  1997年   2篇
  1996年   3篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1989年   1篇
  1988年   3篇
  1986年   2篇
  1985年   1篇
  1981年   2篇
  1979年   1篇
  1975年   1篇
  1972年   2篇
  1971年   1篇
排序方式: 共有51条查询结果,搜索用时 15 毫秒
41.
Chemostratigraphic analyses (87Sr/86Sr, δ13Ccarb) of limestones from two Jurassic platform‐carbonate sequences in Italy (Trento and Campania–Lucania Platforms) illustrate previously established trends found in pelagic sediments and skeletal carbonates from biostratigraphically well‐calibrated sections elsewhere in Europe. Chemostratigraphic correlations between the platform‐carbonate successions and appropriate intervals from well‐dated reference sections allow the application of high‐resolution stratigraphy to these shallow‐water peritidal carbonates and, furthermore, elucidate the facies response to the Early Toarcian Oceanic Anoxic Event (OAE). Lower Jurassic (Toarcian) levels of the western Trento Platform (Southern Alps, Northern Italy) contain spiculitic cherts that appear where rising carbon‐isotope values characterize the onset of the OAE: a palaeoceanographic phenomenon interpreted as driven by increased nutrient levels in near‐surface waters. There is a facies change to more clay‐rich facies at the level of the abrupt negative carbon‐isotope excursion, also characteristic of the OAE, higher in the section. The Campania–Lucania Platform (Southern Apennines, Southern Italy) records a change to more clay‐rich facies where carbon‐isotope values begin to rise at the beginning of the OAE but the negative excursion, higher in the section, occurs within oolitic facies. Although, in both examples, the Early Toarcian OAE can be recognized by a change to more clay‐rich lithologies, this facies development is diachronous and in neither case did the platform drown. Although the Trento Platform, in the south‐west sector studied here, was adversely affected by the OAE, it did not drown definitively until Late Aalenian time; the Campania–Lucania Platform persisted throughout the Jurassic and Cretaceous. Differential subsidence rates, which can be calculated using comparative chemostratigraphy, are identified as a crucial factor in the divergent behaviour of these two carbonate platforms: relatively fast in the case of the Trento Platform; relatively slow in the case of the Campania–Lucania Platform. It is proposed that where water depths remained as shallow as a few metres during the OAE (Campania–Lucania Platform), dissolved oxygen levels remained high, nutrient levels relatively low and conditions for carbonate secretion and precipitation remained relatively favourable, whereas more poorly ventilated and/or more nutrient‐rich waters (Trento Platform) adversely influenced platform growth where depths were in the tens of metres range. The stage was thus set for drowning on the more rapidly subsiding western margin of the Trento Plateau and a pulse of oolite deposition post‐dating the OAE was insufficient to revitalize the carbonate factory.  相似文献   
42.
Sections through Lower Jurassic epicontinental carbonates from Southern Britain (Junction Bed and equivalent) show a positive carbon-isotope excursion (δ13Ccarbonate), detectable in bulk rock, in the falciferum Zone of the lower Toarcian. Isotopic data from organic matter in more clay-rich sections from Wales and north-east England, together with determinations on belemnite calcite, indicate that highest δ13C values are localized in the upper exaratum Subzone of the falciferum Zone. Levels of particular enrichment in organic carbon were developed in the early to mid-exaratum Subzone and hence pre-date this δ13C maximum. These phenomena reflect the impact of the early Toarcian oceanic anoxic event in the British area. Similar isotopic trends have been recorded in other Toarcian sections from Tethyan Europe and are interpreted as reflecting the chemistry of sea water. On the assumption of isotopic correlation between the English and Tethyan sections, the δ13C maximum would be everywhere dated as latest exaratum Subzone in terms of the north European ammonite scheme. Absolute oxygen-isotope values in carbonates probably reflect both early diagenetic cementation and later temperature-related burial diagenesis, although a palaeotemperature maximum is tentatively identified as characterizing the early falciferum Zone. Subsequent climatic deterioration may have been triggered by drawdown of CO2, related to regional excess carbon burial during the oceanic anoxic event. Using the positive δ13C excursion as a correlative level in sections from different faunal provinces (Britain, Italy and Spain) implies that lower Toarcian zonal stratigraphy is diachronous between northern and southern Europe. There is evidence for partitioning of water masses between the north European shelf and the Tethyan continental margin during the Early Jurassic.  相似文献   
43.
ABSTRACT. In the first half of the twentieth century French academic geography did not present a unified front: The “outsiders” Jean Brunhes and Pierre Deffontaines offered a vision of la géographie humaine that did not conform to the one proclaimed by Vidal de La Blache and his disciples. After sketching the careers of Brunhes and Deffontaines, this essay explores the network of connections between the academic editor Deffontaines and the contributors to the Geographie Humaine series published by Gaston Gallímard. As committed Christians, Brunhes and Deffontaines emphasized the realm of ideas, values, and decision making, as well as their tangible realization and visual expression in cultural landscapes. Both men saw the discipline of geography as a means of celebrating the diversity of the world and the popularization of geography as a way of promoting international understanding and tolerance. Their inclusivity and interaction with other academic disciplines are relevant to current practitioners of cultural geography.  相似文献   
44.
The compositions of multiply saturated partial melts are valuablefor the thermodynamic information that they contain, but aredifficult to determine experimentally because they exist onlyover a narrow temperature range at a given pressure. Here wetry a new approach for determining the composition of the partialmelt in equilibrium with olivine, orthopyroxene, clinopyroxeneand spinel (Ol + Opx + Cpx + Sp + Melt) in the system CaO–MgO–Al2O3–SiO2(CMAS) at 1·1 GPa: various amounts of K2O are added tothe system, and the resulting melt compositions and temperatureare extrapolated to zero K2O. The ‘sandwich’ experimentalmethod was used to minimize problems caused by quench modification,and Opx and Cpx were previously synthesized at conditions nearthose of the melting experiments to ensure they had appropriatecompositions. Results were then checked by reversal crystallizationexperiments. The results are in good agreement with previouswork, and establish the anhydrous solidus in CMAS to be at 1320± 10°C at 1·1 GPa. The effect of K2O is todepress the solidus by 5·8°C/wt %, while the meltcomposition becomes increasingly enriched in SiO2, being quartz-normativeabove 4 wt % K2O. Compared with Na2O, K2O has a stronger effectin depressing the solidus and modifying melt compositions. Theisobaric invariant point in the system CMAS–K2O at whichOl + Opx + Cpx + Sp + Melt is joined by sanidine (San) is at1240 ± 10°C. During the course of the study severalother isobaric invariant points were identified and their crystaland melt compositions determined in unreversed experiments:Opx + Cpx + Sp + An + Melt in the system CMAS at 1315 ±10°C; in CMAS–K2O, Opx + Cpx + Sp + An + San + Meltat 1230 ± 10°C and Opx + Sp + An + San + Sapph +Melt at 1230 ± 10°C, where An is anorthite and Sapphis sapphirine. Coexisting San plus An in three experiments helpdefine the An–San solvus at 1230–1250°C. KEY WORDS: feldspar solvus; igneous sapphirine; mantle solidus; partial melting; systems CMAS and CMAS–K2O  相似文献   
45.
Oxygen isotope analyses have been obtained on rocks and coexistingminerals, principally plagioclase and clinopyroxene, from about400 samples of the Skaergaard layered gabbro intrusion and itscountry rocks. The 18O values of plagioclase decrease upwardin the intrusion, from ‘normal’ values of about+6.0 to +6.4 in the Lower Zone and parts of the Middle Zone,to values as low as –2.4 in the Upper Border Group. The18O depletions of the plagioclase all took place under subsolidusconditions, and were produced by the Eocene meteoric-hydrothermalsystem established by this pluton. Clinopyroxene, which is moreresistant to 18O exchange than is plagioclase, also underwentdepletion in 18O, but to a lesser degree (18O = +5.2 to +3.5).The 18O-depleted rocks typically show reversed 18Oplag–pxfractionations, except at the top of the Upper Zone, where thepyroxenes are very fine-grained aggregates pseudomorphous afterferrowollastonite; these inverted pyroxenes were much more susceptibleto subsolidus 18O exchange (18O = +3–9 to +0.7). D/H analysesof the chloritized basalt country rocks and of the minor quantitiesof alteration minerals in the pluton (D = –116 to –149)confirm these interpretations, indicating that the rocks interactedwith meteoric groundwaters having an original D –100.and 18O –14. Low D values ( –125) were also foundthroughout the biotites of the Precambrian basement gneiss,requiring that small amounts of water penetrated downward todepths of at least 6 to 10 km. These values, together with thelack of 18O depletion of the gneiss, imply that the overallwater/rock ratios were very small in that unit (<0.01), andthus that convective circulation of these waters was much morevigorous in the overlying highly jointed plateau basalts (18O –4.0 to +4–0) than in the relatively impermeablegneiss (18O +7–3 to +7–7). This contrast in permeabilitiesof the country rocks is also reflected in the distribution of18O values in the pluton; the plagioclases with ‘normal’18O values all lie stratigraphically beneath the projectionof the basalt-gneiss unconformity through the pluton. Elsewhere,the 18O depletions are correlated with abundance of fracturesand faults, particularly in the NE portion of the intrusion,where the Layered Series is very shallow-dipping and permeablebasalts underlie the gabbro. The transgressive granophyres in the lower part of the intrusivehave 18O values identical to those of the basement gneiss, indicatingthey were probably formed by partial melting of stoped blocksof gneiss. In the upper part of the intrusion these granophyredikes have 18O values similar to the adjacent host gabbro; thissuggests that much of the hydrothermal alteration occurred aftertheir emplacement. However, because of the rarity of low-temperaturehydrous alteration minerals, it is also clear that most of theinflux of H2O into the layered gabbro occurred at very hightemperatures (>400–500 °C). Prior to flowing intothe gabbro, these fluids had exchanged with similar mineralassemblages in the basaltic country rocks, explaining the lackof chemical alteration of the gabbro. Xenoliths of roof rockbasalt and of Upper Border Group leucogabbro were strongly depletedin 18O by the hydrothermal system prior to their falling tothe bottom of the magma chamber and being incorporated in thelayered series. This proves that the hydrothermal system wasestablished very early, at the time of emplacement of the Skaergaardintrusion. However, no measurable 18O depletion of the gabbromagma could be detected, indicating that very little H2O penetrateddirectly into the liquid magma, in spite of the fact that ahydrothermal circulation system totally enveloped the magmachamber for at least 100, 000 years during its entire periodof crystallization. Only as crystallization proceeded was thehydrothermal system able to collapse inward and interact withthe solidified and fractured portions of the gabbro. Neverthelesssome H2O was clearly added directly to the magma by dehydrationof the stoped blocks of altered roof rock. It is also plausiblethat small amounts of meteoric water diffused directly intothe magma, most logically in the vicinity of major fracturezones that penetrated close to, or were underneath, the late-stagesheet of differentiated ferrodiorite magma. It is suggestedthat such influx of meteoric waters was responsible for manyof the gabbro pegmatite bodies that are common in the MarginalBorder Group; also, such H2O might have produced local increasesin Fe+3/Fe+2 in the magma that in turn could explain some ofthe asymmetric crystallization effects in the magma chamber.Local lowering of the liquidus temperature would also occur,perhaps leading to topographic irregularities on the floor ofthe magma chamber (e.g. the trough bands?).  相似文献   
46.
Olivine tholeiites (8–10 wt. % MgO) from Krafla show significantcorrelations between major elements (notably Fe) and incompatibletrace elements. In particular, the samples with the highestFe contents are the most enriched in elements such as K, Ti,and light rare earth elements (LREEs). The observed trends cannotbe explained by fractional crystallization of olivine, plagioclase,or clinopyrox-ene from a single primary magma, nor are theylikely to result from crustal contamination. The simplest explanationfor the compositional variations is that they result from imperfectmixing of primary melts, produced at different levels in theupwelling asthenosphere, which later underwent olivine fractionation.Nd and Sr isotopic data hint at the possibility that some mixingbetween two (plume and non-plume) mantle sources may also berequired. The average olivine tholeiite composition is comparedwith the average compositions of melts, predicted from parameterizationsof melting experiments, produced from mantle with differentpotential temperatures. The predicted compositions were correctedfor fractional crystallization before the comparison was made.The data compare well with the predicted average compositionof melt from mantle with a potential temperature of {small tilde}1580C. Differences between the observed and predicted compositions(notably higher Fe and lower Na in the Krafla basalts) are ascribedeither to errors related to the modelling or to the effect oftemperature- and velocity-structure of the mantle plume beneathIceland. The average REE composition of the olivine tholeiiteswas then inverted to obtain the variation of melt fraction withdepth. The predicted melt fraction rises from 00 at a depthof {small tilde} 140 km (consistent with a potential temperatureclose to 1580 C) to a maximum value of {small tilde} 03 atthe surface. The predicted melt thickness ({small tilde}22 kmwhen corrected for fractional crystallization) is consistentwith geophysical estimates of crustal thickness.  相似文献   
47.
The Wilde Kirche reef complex (Early-Late Rhaetian) grew as an isolated carbonate structure within the shallow Kössen Basin. At the Triassic/Jurassic boundary a single brief (c. 10–50 ka) period of subaerial exposure occurred. The preserved karst profile (70 m thick) displays a vadose zone, enhanced dissolution at a possible palaeo-watertable (5–15 m below the exposure surface), and a freshwater phreatic zone. Karst porosity was predominantly biomouldic. Primary cavities and biomoulds were enlarged and interconnected in the freshwater phreatic zone; cavity networks developed preferentially in patch reef facies. Resubmergence of the reef complex allowed minor modification of the palaeokarst surface by sea floor dissolution and Fe-Mn crust deposition on a sediment-starved passive margin. Fibrous calcite (FC). radiaxial fibrous calcite (RFC) and fascicular optic calcite (FOC) cements preserved as low Mg calcite (LMC) are abundant in primary and karst dissolution cavities. FC cement is restricted to primary porosity, particularly as a synsedimentary cement at the windward reef margin. FC, RFC and FOC contain microdolomite inclusions and show patchy non-/bright cathodoluminescence. δ18O values of non-luminescent portions (interpreted as near original) are − 1.16 to − 1.82%0 (close to the inferred δ18O of calcite precipitated from Late Triassic sea water). δ13C values are constant (+3 to + 2.2%0). These observations suggest FC, RFC and FOC were originally marine high Mg calcite (HMC) precipitates, and that the bulk of porosity occlusion occurred not in the karst environment but in the marine environment during and after marine transgression. The HMC to LMC transition may have occurred in contact with meteoric water only in the case of FC cement. The most altered (brightly luminescent) portions of RFC/FOC cements yield δ18O=−2.44 to − 5.8%0, suggesting HMC to LMC alteration at up to 34°C. in the shallow burial environment at depths of 180–250 m. Abundant equant cements with δ18O =−4·1 to −7.1%0 show crisp, uniform or zoned dull luminescence. They are interpreted as unaltered cements precipitated at 33–36°C at 200–290 m burial depth, from marine-derived fluids under a slightly enhanced geothermal gradient. Fluids carrying the equant cements may have induced the HMC to LMC transition in the fibrous cements.  相似文献   
48.
Ice blisters, typically 0.2–0.8 m high and 5–20 m long, develop annually on perennially frozen lakes in Northern Victoria Land. They are believed to be caused by hydrostatic pressures generated through progressive freezing of solute-rich water beneath the lake-ice cover during winter. Lake-ice blisters in the study area differfrom icing blisters described from the northern hemisphere. The latter are caused by hydraulic pressures and are found at locations such as river beds or spring sites on sloping terrain. The Antarctic lake-ice blisters reflect the occurrence of dry-based perennially frozen lakes with high salt contents in an extremely cold and arid environment.  相似文献   
49.
50.
The effects of small amounts of H2O (<4 wt % in the melt)on the multiply saturated partial melting of spinel lherzolitein the system CaO–MgO–Al2O3–SiO2 ±Na2O ± CO2 have been determined at 1·1 GPa inthe piston-cylinder apparatus. Electron microprobe analysisand Fourier transform infrared spectroscopy were used to analysethe experimental products. The effects of H2O are to decreasethe melting temperature by 45°C per wt % H2O in the melt,to increase the Al2O3 of the melts, decrease MgO and CaO, andleave SiO2 approximately constant, with melts changing fromolivine- to quartz-normative. The effects of CO2 are insignificantat zero H2O, but become noticeable as H2O increases, tendingto counteract the H2O. The interaction between H2O and CO2 causesthe solubility of CO2 at vapour saturation to increase withincreasing H2O, for small amounts of H2O. Neglect of the influenceof CO2 in some previous studies on the hydrous partial meltingof natural peridotite may explain apparent inconsistencies betweenthe results. The effect of small amounts of H2O on multiplysaturated melt compositions at 1·1 GPa is similar tothat of K2O, i.e. increasing H2O or K2O leads to quartz-normativecompositions, but increasing Na2O produces an almost oppositetrend, towards nepheline-normative compositions. KEY WORDS: H2O; CO2; FTIR; hydrous partial melting; mantle melting; spinel lherzolite; system CaO–MgO–Al2O3–SiO2 ± H2O ± CO2 ± Na2O  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号