首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   671篇
  免费   23篇
  国内免费   12篇
测绘学   5篇
大气科学   25篇
地球物理   157篇
地质学   236篇
海洋学   146篇
天文学   108篇
综合类   5篇
自然地理   24篇
  2023年   5篇
  2021年   12篇
  2020年   10篇
  2019年   27篇
  2018年   9篇
  2017年   14篇
  2016年   23篇
  2015年   7篇
  2014年   27篇
  2013年   29篇
  2012年   14篇
  2011年   24篇
  2010年   31篇
  2009年   27篇
  2008年   36篇
  2007年   39篇
  2006年   31篇
  2005年   35篇
  2004年   19篇
  2003年   19篇
  2002年   16篇
  2001年   17篇
  2000年   13篇
  1999年   23篇
  1998年   15篇
  1997年   7篇
  1996年   11篇
  1995年   8篇
  1994年   7篇
  1993年   8篇
  1992年   7篇
  1991年   4篇
  1990年   6篇
  1989年   4篇
  1988年   7篇
  1987年   12篇
  1986年   10篇
  1985年   10篇
  1984年   8篇
  1983年   11篇
  1982年   6篇
  1981年   6篇
  1980年   4篇
  1979年   7篇
  1978年   12篇
  1977年   6篇
  1976年   5篇
  1975年   5篇
  1974年   4篇
  1970年   2篇
排序方式: 共有706条查询结果,搜索用时 31 毫秒
31.
Dendritic cordierite occurs in argillaceous hornfels from the Toki area, Gifu Prefecture, Japan. The cordierite crystal consists of c-arms elongated parallel to the c-axes and a-arms perpendicular to the c-axis. The latter arms could be divided into six kinds of untwinned a-arms with different growth directions elongated parallel to the respective a-axis and twinned a-arms elongated parallel to the (110) twin plane. A-arms branch out from c-arms or other a-arms with different growth directions and c-arms sometimes branch out from a-arms, leading to a tree-like structure. Each of the c-arms contains three kinds of domains related by a three-fold axis about the c-axis. These domains are irregularly distributed without any relation to the shape of the c-arm and the domain boundaries are of zigzag shape. This domain arrangement suggests that c-arms grew as hexagonal cordierite and were later transformed into orthorhombic cordierite. The fact that each untwinned a-arm has a fixed growth direction to its orientation suggests that the a-arms grew as an orthorhombic cordierite. From the growth directions of c- and a-arms, orthorhombic and hexagonal phases are considered to grow preferentially along the c- and a-axes, respectively. The branching of a new arm is explained by nucleation on an old arm with a different preferred growth direction. The preferential growth is discussed in terms of a significant chemical potential gradient of the cordierite component. This has been preserved in the mineral zoning observed in the matrix around the cordierite porphyroblast.  相似文献   
32.
A controlled active experiment was performed by a plasma gun on-board a rocket to study the plasma stream across the magnetic field in space. A mother and daughter system was employed. An 8 kV 0.8 μF (25 J) capacitor bank on the daughter rocket was discharged every 12 s and about 1016 ion and electron pairs were ejected. A plasma signal was detected on the electron temperature probe. The propagation speed of the plasma stream is estimated to be 106 cm/s, considerably lower than that obtained in the prelaunch test. The amplitude of the plasma signal decays as the inverse square of the mutual distance between the mother and daughter rockets and this decay is much slower than the free streaming. The importance of the geomagnetic field on the plasma propagation in space is discussed.  相似文献   
33.
Abstract: K–Ar ages of the following porphyry Cu deposits in the western Luzon arc are determined: Lobo-Boneng (10.50.4 Ma), Santo Niño (9.50.3 Ma), Black Mountain (2.10.1 Ma), Dizon (2.50.2 Ma) and Taysan (7.30.2 Ma). Microphenocrys-tic apatite in the late Cenozoic intermediate to silicic intrusions associated with porphyry Cu deposits in the western Luzon arc contains sulfur as SO3 detectable by electron probe microanalyzer. Sulfur is supposed to have been accommodated dominantly as oxidized species in oxidizing hydrous magmas that generated porphyry Cu deposits. Likewise, such high SO3 contents in microphenocrystic apatite are common characteristics of the intermediate to silicic magmatism of the western Luzon arc, from tonalitic rocks of the Luzon Central Cordillera of about 15 Ma to an active magmatism at Mount Pinatubo. Thus, the western Luzon arc has been generating porphyry Cu mineralization associated with oxidizing hydrous intermediate to silicic magmatism related to eastward subduction, since Miocene to the present day. Intermediate to silicic rocks since 15 Ma to present-day western Luzon arc generally show high whole-rock Sr/Y ratio ranging from 20 to 184. However, porphyry Cu deposit is not necessarily related to the rocks that show higher Sr/Y ratios compared to the other barren rocks in the western Luzon arc. The characteristics of the intermediate to silicic magma associated with porphyry Cu deposit are not attributed to the composition of the source material of the magma, but to the properties defined by the high activity of oxidized species of sulfur in the fluid phase that is encountered during the generation of intermediate to silicic magmas.  相似文献   
34.
Abstract. Near-infrared (NIR) and visible light microthermometry was applied to the fluid inclusions in sphalerite from a possible southeast extension of the Toyoha polymetallic deposit. Sphalerite occurs as euhedral-subhedral crystals or collo-form aggregates with a variety of color, which contain a well-developed growth banding. Combined with morphological observations, fluid inclusions in dark-colored sphalerite were examined using a near-infrared light microscopic technique, whereas those in light-colored sphalerite and quartz were examined by a conventional visible light microscopy.
Salinities of fluid inclusions in dark-colored sphalerite have a wide variation (1.0–10.3 wt % NaCl equiv.) compared to that in light-colored sphalerite and quartz (0.0–3.4 wt % NaCl equiv.). These variations suggest that the conventional microthermometric data from light-colored sphalerite and quartz were inadequate to interpret the ore formation process. Dark-colored colloform sphalerite and a dark core of subhedral sphalerite formed from high-salinity fluids (6.5–10.3 wt % NaCl equiv.) under highly supersaturated conditions with respect to sphalerite.
The NIR and visible light microthermometry of fluid inclusions in sphalerite combined with its morphological observations is an invaluable method to infer the formation conditions of sphalerite. The NIR and visible light microthermometry is useful to reveal how the nature of ore fluids changed with time.  相似文献   
35.
36.
Based on the single scattering model of coda power spectrum analysis, digital waveform data of 50 events recorded by the real-time processing system of the Chengdu telemetry network are analyzed to estimate the Q c values of earth medium beneath the Chengdu telemetry network for several specified frequencies. It is found that the Q c shows the frequency dependency in the form of Q c = Q 0 f n in the range of 1.0 to 20.0Hz. Estimated Q 0 ranges from 60.83 to 178.05, and n is found to be 0.713 to 1.159. The average value of Q 0 and n are 117 and 0.978 respectively. This result indicates the strong frequency dependency of the attenuation of coda waves beneath the Chengdu telemetry network. Comparing with the results obtained in other regions of the world, it is found that Q 0 −1 value and its change with frequency are similar to those in regions with strong tectonic activity. This subject is supported by the Ministry of Personnel, China for partly sponsoring.  相似文献   
37.
38.
Abstract. Halogen-rich phlogopite occurs in the groundmass of andesite and dacite lavas from Late Tertiary to Quaternary volcanoes associated with native sulfur and limonite deposits (Shiretoko-Iwozan, Hachimantai, Adatara, Omeshidake, Masaki) and hydrothermal ore deposits (Harukayama, Muineyama, Hishikari) in Japan. The F contents of the halogen-rich phlogopite range from 3.6 to 5.7 wt%, corresponding to atomic F/(F+C1+OH) ratios ranging from 0.45 to 0.69. On the other hand, the Cl contents of the halogen-rich phlogopite are around 0.2 wt%. The atomic Mg/(Mg+Fe) ratios range from 0.69 to 0.83.
The fluorine intercept value [IV(F)] defined by Munoz (1984) of the phlogopites ranges from 0.79 to 3.17, and the chlorine intercept value [IV(Cl)] ranges from -7.11 to -7.77. The observed IV(F) of the phlogopites broadly overlap the range of the IV(F) for biotites from porphyry copper deposits. On the other hand, the observed IV(Cl) are significantly lower than the IV(Cl) for biotites from porphyry copper deposits. Whereas the F contents of the phlogopite appear more prominent compared to the Cl contents, the calculation of halogen intercept values revealed that the phlogopites are enriched in Cl with respect to the element distribution effect of Mg-Fe substitution. Since the degree of Cl enrichment of the phlogopite is more significant compared to that of biotite in porphyry copper deposits, the phlogopites are considered to have formed under the condition of significantly high activity of halogens. Hydrothermal ore deposits may be formed in magmatic hydrothermal system associated with volcanoes where halogen-rich phlogopite is formed by hypersaline fluid.  相似文献   
39.
Abstract. The Batu Hijau porphyry Cu‐Au deposit, Sumbawa Island, Indonesia, is associated with a tonalitic intrusive complex. The temperature‐pressure condition of mineralization at the Batu Hijau deposit is discussed on the basis of fluid inclusion microthermometry. Then, the initial Cu‐Fe sulfide mineral assemblage is discussed. Bornite and chalcopyrite are major copper ore minerals associated with quartz veinlets. The quartz veinlets have been classified into ‘A’ veinlets associated with bornite, digenite, chalcocite and chalcopyrite, ‘B’ veinlets having chalcopyrite bornite along vuggy center‐line, rare ‘C’ chalcopyrite‐quartz veinlets, and late ‘D’ veinlets consisting of massive pyrite and quartz (Clode et al., 1999). Copper and gold mineralization is associated with abundant ‘A’ quartz veinlets. Abundant fluid inclusions are found in veinlet quartz consisting mainly of gas‐rich inclusions and polyphase inclusions throughout the veinlet types. The hydrothermal activity occurred in temperature‐pressure conditions of aqueous fluid immiscibility into hypersaline brine and dilute vapor. The halite dissolution (Tm[halite]) and liquid‐vapor homogenization (Th) temperatures of the polyphase inclusions in veinlet quartz range from 270 to 472d?C and from 280 to 454d?C, respectively. The estimated salinity ranges from 36 to 47 wt% (NaCl equiv.). The apparent pressures lower than 300 bars are estimated to have been along the liquid‐vapor‐halite curve for the fluid inclusions having the Th lower than the Tm that trapped the brine saturated with halite, or at slightly higher pressure relative to liquid‐vapor‐halite curve for the fluid inclusions having the Th higher than the Tm that trapped the brine unsaturated with halite. The actual temperature and pressure during the hydrothermal activity at the Batu Hijau deposit are estimated to have been around 300d?C and 50 bars. At such temperature‐pressure conditions, the principal and initial Cu‐Fe sulfide mineral assemblages are thought to be chalcopyrite + bornite solid solution (bnss) for the chalcopyrite‐bearing assemblage, and chalcocite‐digenite solid solution and bnss for the chalcopyrite‐free assemblage.  相似文献   
40.
Abstract. Evolution of hydrothermal system from initial porphyry Cu mineralization to overlapping epithermal system at the Dizon porphyry Cu‐Au deposit in western central Luzon, Zambales, Philippines, is documented in terms of mineral paragen‐esis, fluid inclusion petrography and microthermometry, and sulfur isotope systematics. The paragenetic stages throughout the deposit are summarized as follows; 1) stockwork amethystic quartz veinlets associated with chalcopyrite, bornite, magnetite and Au enveloped by chlorite alteration overprinting biotite alteration, 2) stockwork quartz veinlets with chalcopyrite and pyrite associated with Au and chalcopyrite and pyrite stringers in sericite alteration, 3) stringer quartz veinlets associated with molybdenite in sericite alteration, and 4) WNW‐trending quartz veins associated with sphalerite and galena at deeper part, while enargite and stibnite at shallower levels associated with advanced argillic alteration. Chalcopyrite and bornite associated with magnetite in quartz veinlet stockwork (stage 1) have precipitated initially as intermediate solid solution (iss) and bornite solid solution (bnss), respectively. Fluid inclusions in the stockwork veinlet quartz consist of gas‐rich inclusions and polyphase inclusions. Halite in polyphase inclusions dissolves at temperatures ranging from 360d?C to >500d?C but liquid (brine) and gas (vapor) do not homogenize at <500d?C. The maximum pressure and minimum temperature during the deposition of iss and bnss with stockwork quartz veinlets are estimated to be 460 bars and 500d?C. Fluid inclusions in veinlet stockwork quartz enveloped in sericite alteration (stage 2) consist mainly of gas‐rich inclusions and polyphase inclusions. In addition to the possible presence of saturated NaCl crystals at the time of entrapment of fluid inclusions that exhibit the liquid‐vapor homogenization temperatures lower than the halite dissolution temperatures in some samples, wide range of temperatures of halite dissolution and liquid‐vapor homogenization of polyphase inclusions from 230d?C to >500d?C and from 270d?C to >500d?C, respectively, suggests heterogeneous entrapment of gaseous vapor and hypersaline brine. The minimum pressure and temperature are estimated to be about 25 bars and 245d?C. Fluid inclusions in veinlet quartz associated with molybdenite (stage 3) are dominated by gas‐rich inclusions accompanied with minor liquid‐rich inclusions that homogenize at temperatures between 350d?C and 490d?C. Fluid inclusions in vuggy veinlet quartz associated with stibnite (stage 4) consist mainly of gas‐rich inclusions with subordinate polyphase inclusions that do not homogenize below 500d?C. Fluid inclusions in veinlet quartz associated with galena and sphalerite (stage 4) are composed of liquid‐rich two‐phase inclusions, and they homogenize into liquid phase at temperatures ranging widely from 190d?C to 300d?C (suggesting boiling) and the salinity ranges from 1.0 wt% to 3.4 wt% NaCl equivalent. A pressure of about 15 bars is estimated for the dilute aqueous solution of 190d?C from which veinlet quartz associated with galena and sphalerite precipitated. In addition to a change in temperature‐pressure regime from lithostatic pressure during the deposition of iss and bnss with stockwork quartz veinlets to hydrostatic pressure during fracture‐controlled quartz veinlet associated with galena and sphalerite, a decrease in pressure is supposed to have occurred due to unroofing or removal of the overlying piles during the temperature decrease in the evolution of hydrothermal system. The majority of the sulfur isotopic composition of sulfides ranges from ±0 % to +5 %. Sulfur originated from an iso‐topically uniform and homogeneous source, and the mineralization occurred in a single hydrothermal system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号