首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2811篇
  免费   77篇
  国内免费   25篇
测绘学   77篇
大气科学   149篇
地球物理   643篇
地质学   934篇
海洋学   210篇
天文学   533篇
综合类   18篇
自然地理   349篇
  2021年   15篇
  2020年   32篇
  2019年   30篇
  2018年   53篇
  2017年   39篇
  2016年   49篇
  2015年   51篇
  2014年   69篇
  2013年   135篇
  2012年   73篇
  2011年   107篇
  2010年   128篇
  2009年   141篇
  2008年   127篇
  2007年   123篇
  2006年   106篇
  2005年   93篇
  2004年   99篇
  2003年   104篇
  2002年   85篇
  2001年   51篇
  2000年   69篇
  1999年   41篇
  1998年   33篇
  1997年   52篇
  1996年   43篇
  1995年   46篇
  1994年   39篇
  1993年   47篇
  1992年   47篇
  1991年   30篇
  1990年   38篇
  1989年   37篇
  1988年   35篇
  1987年   32篇
  1986年   37篇
  1985年   52篇
  1984年   54篇
  1983年   44篇
  1982年   40篇
  1981年   52篇
  1980年   42篇
  1979年   27篇
  1978年   30篇
  1977年   40篇
  1976年   25篇
  1975年   25篇
  1974年   31篇
  1973年   29篇
  1971年   14篇
排序方式: 共有2913条查询结果,搜索用时 78 毫秒
121.
122.
The properties of ordinary chondrites (OC) reflect both nebular and asteroidal processes. OC are modeled here as having acquired nebular water, probably contained within phyllosilicates, during agglomeration. This component had high Δ17O and acted like an oxidizing agent during thermal metamorphism. The nebular origin of this component is consistent with negative correlations in H, L, and LL chondrites between oxidation state (represented by olivine Fa) and bulk concentration ratios of elements involved in the metal-silicate fractionation (e.g., Ni/Si, Ir/Si, Ir/Mn, Ir/Cr, Ir/Mg, Ni/Mg, As/Mg, Ga/Mg). LL chondrites acquired the greatest abundance of phyllosilicates with high Δ17O among OC (and thus became the most oxidized group and the one with the heaviest O isotopes); H chondrites acquired the lowest abundance, becoming the most reduced OC group with the lightest O isotopes.Chondrule precursors may have grown larger and more ferroan with time in each OC agglomeration zone. Nebular turbulence may have controlled the sizes of chondrule precursors. H-chondrite chondrules (which are the smallest among OC) formed from the smallest precursors. In each OC region, low-FeO chondrules formed before high-FeO chondrules during repeated episodes of chondrule formation.During thermal metamorphism, phyllosilicates were dehydrated; the liberated water oxidized metallic Fe-Ni. This caused correlated changes with petrologic type including decreases in the modal abundance of metal, increases in olivine Fa and low-Ca pyroxene Fs, increases in the olivine/pyroxene ratio, and increases in the kamacite Co and Ni contents. As water (with its heavy O isotopes) was lost during metamorphism, inverse correlations between bulk δ18O and bulk δ17O with petrologic type were produced.The H5 chondrites that were ejected from their parent body ∼7.5 Ma ago during a major impact event probably had been within a few kilometers of each other since they accreted ∼4.5 Ga ago. There are significant differences in the olivine compositional distributions among these rocks; these reflect stochastic nebular sampling of the oxidant (i.e., phyllosilicates with high Δ17O) on a 0.1-1 km scale during agglomeration.  相似文献   
123.
124.
Low‐pressure and high‐temperature (LP–HT) metamorphism of basaltic rocks, which occurs globally and throughout geological time, is rarely constrained by forward phase equilibrium modelling, yet such calculations provide valuable supplementary thermometric information and constraints on anatexis that are not possible to obtain from conventional thermometry. Metabasalts along the southern margin of the Sudbury Igneous Complex (SIC) record evidence of high‐grade contact metamorphism involving partial melting and melt segregation. Peak metamorphic temperatures reached at least ~925°C at ~1–3 kbar near the SIC contact. Preservation of the peak mineral assemblage indicates that most of the generated melt escaped from these rocks leaving a residuum characterized by a plagioclase–orthopyroxene–clinopyroxene–ilmenite‐magnetite±melt assemblage. Peak temperatures reached ~875°C up to 500 m from the SIC lower contact, which marks the transition to metabasalts that only experienced incipient partial melting without melt loss. Metabasalts ~500 to 750 m from the SIC contact are characterized by a similar two‐pyroxene mineral assemblage, but typically contain abundant hornblende that overgrew clino‐ and orthopyroxene along an isobaric cooling path. Metabasalts ~750 to 1,000 m from the SIC contact are characterized by a hornblende–plagioclase–quartz–ilmenite assemblage indicating temperatures up to ~680°C. Mass balance and phase equilibria calculations indicate that anatexis resulted in 10–20% melt generation in the inner ~500 m of the aureole, with even higher degrees of melting towards the contact. Comparison of multiple models, experiments, and natural samples indicates that modelling in the Na2O–CaO–FeO–MgO–Al2O3–SiO2–H2O–TiO2–O2 (NCFMASHTO) system results in the most reliable predictions for the temperature of the solidus. Incorporation of K2O in the most recent amphibole solution model now successfully predicts dehydration melting by the coexistence of high‐Ca amphibole and silicate melt at relatively low pressures (~1.5 kbar). However, inclusion of K2O as a system component results in prediction of the solidus at too low a temperature. Although there are discrepancies between modelling predictions and experimental results, this study demonstrates that the pseudosection approach to mafic rocks is an invaluable tool to constrain metamorphic processes at LP–HT conditions.  相似文献   
125.
126.
A new elastoplastic model called loading memory surface based on the critical state concept and the multi‐surface framework is proposed for geomaterials. The model uses a hypoelastic formulation and two plastic mechanisms. The formulations of the model are made in three‐dimensional stress–strain space and work under both monotonic and cyclic loadings. A newly introduced formalism makes it possible to obtain the cyclic response directly from the monotonic loading one. This formalism gives a three‐dimensional generalization of the well‐known Masing rule. The model has been validated against test results of Hostun sand under several conditions: monotonic and cyclic, drained and undrained, tests in compression and in extension, and at different confining pressures and different densities. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
127.
128.
129.
The Ediacaran Jibalah Group comprises volcano‐sedimentary successions that filled small fault‐bound basins along the NW–SE‐trending Najd fault system in the eastern Arabian‐Nubian Shield. Like several other Jibalah basins, the Antaq basin contains exquisitely preserved sedimentary structures and felsic tuffs, and hence is an excellent candidate for calibrating late Ediacaran Earth history. Shallow‐marine strata from the upper Jibalah Group (Muraykhah Formation) contain a diversity of load structures and intimately related textured organic (microbial) surfaces, along with a fragment of a structure closely resembling an Ediacaran frond fossil and a possible specimen of Aspidella. Interspersed carbonate beds through the Muraykhah Formation record a positive δ13C shift from ?6 to 0‰. U‐Pb zircon geochronology indicates a maximum depositional age of ~570 Ma for the upper Jibalah Group, consistent with previous age estimates. Although this age overlaps with that of the upper Huqf Supergroup in nearby Oman, these sequences were deposited in contrasting tectonic settings on opposite sides of the final suture of the East African Orogen.  相似文献   
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号