首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1800篇
  免费   85篇
  国内免费   49篇
测绘学   61篇
大气科学   137篇
地球物理   398篇
地质学   647篇
海洋学   120篇
天文学   419篇
综合类   10篇
自然地理   142篇
  2023年   13篇
  2022年   10篇
  2021年   37篇
  2020年   43篇
  2019年   39篇
  2018年   82篇
  2017年   69篇
  2016年   81篇
  2015年   77篇
  2014年   82篇
  2013年   113篇
  2012年   69篇
  2011年   103篇
  2010年   84篇
  2009年   100篇
  2008年   91篇
  2007年   92篇
  2006年   79篇
  2005年   64篇
  2004年   65篇
  2003年   52篇
  2002年   51篇
  2001年   38篇
  2000年   47篇
  1999年   34篇
  1998年   21篇
  1997年   24篇
  1996年   21篇
  1995年   12篇
  1994年   15篇
  1993年   14篇
  1992年   15篇
  1991年   9篇
  1990年   11篇
  1989年   6篇
  1988年   6篇
  1987年   7篇
  1986年   11篇
  1985年   15篇
  1984年   8篇
  1983年   13篇
  1982年   7篇
  1981年   9篇
  1980年   8篇
  1979年   9篇
  1978年   8篇
  1977年   7篇
  1976年   8篇
  1973年   5篇
  1969年   5篇
排序方式: 共有1934条查询结果,搜索用时 15 毫秒
971.
Line-source multi-tracer test for assessing high groundwater velocity   总被引:1,自引:0,他引:1  
Segmented line-source multi-tracer injection is suggested as an effective method for assessing groundwater velocities and flow directions in subsurfaces characterized by high water flux. Modifying the common techniques of injecting a tracer into a well became necessary after point-source natural and forced gradient tracer tests ended with no reliable information on the local groundwater flow. The tracer's line-source increases the likelihood of success of the test and could provide additional information regarding the lateral heterogeneity of the aquifer. In a field experiment conducted in the northwestern part on the Dead Sea coast, tracers were injected into an 8-m-long line injection system perpendicular to the assumed flow direction. The injection system was divided into four separate segments with four different tracers. An array of five boreholes located within a 10 × 10 m area downstream was used for monitoring the tracers' transport. Two dye tracers (uranine and Na naphthionate) were injected in a long pulse of several hours into two of the injection pipe segments. Two other tracers (Rhenium oxide and Gd-DTPA) were instantaneously injected into the other two segments. The tracers were detected 0.7 to 2.3 h after injection in four of the five observation wells, located 2.3 to 10 m away from the injection system. The groundwater velocity was determined to be ~80 to 170 m/d, based on the recoveries of the tracers. The groundwater flow direction was derived based on the arrival of the tracers and was found to be quite consistent with the apparent direction of the hydraulic gradient.  相似文献   
972.
973.
Currents in the northern Bay of La Paz were examined using an 8-month Acoustic Doppler Current Profiler (ADCP) record collected in the upper 185 m of the water column during 2007. Flow variability was dominated by tidal motions, which accounted for 43% (33% diurnal, 10% semidiurnal) of the total kinetic energy. The tidal motions had a pronounced vertical structure dominated within a shallow (∼30 m thick) surface layer by intense counterclockwise (CCW) rotary S1 diurnal radiational currents that were highly coherent with the counterclockwise seabreeze. Motions within the semidiurnal frequency band were primarily associated with significant counterclockwise S2 radiational tidal currents, which were also coherent with the seabreeze. Both S1 and S2 tidal ellipses in the upper layer were aligned perpendicular to the bay entrance with mean semi-major axes of 55 and 20 cm/s, respectively. Below the surface layer, tidal currents decayed rapidly to relatively weak, clockwise rotary barotropic motions. In contrast to those for radiational harmonics, tidal ellipses of the gravitational constituents (M2, K1 and O1) were oriented cross-bay. Energy within the diurnal frequency band in the surface layer was dominated by a coherent component (barotropic, phase-locked baroclinic and radiational), which accounted for roughly 65% (59% from S1 alone) of the total diurnal kinetic energy. Of the remaining diurnal band energy, 18% was associated with an incoherent baroclinic component and 17% with a background noise component. Below 30 m depth, the corresponding estimates are 40%, 32% and 28%, respectively. The persistent, surface-intensified CCW rotary currents observed at the mooring site are assumed to be forced by strong CCW seabreeze winds in the presence of a “slippery” low-density surface layer. This response may be further augmented by topographic narrowing at the bay entrance and by the close proximity of the diurnal and inertial frequency bands in the region.  相似文献   
974.
On 20th May 2006 the Soufrière Hills Volcano on the Caribbean island of Montserrat experienced a large dome collapse and intense rainfall generated flash floods. The floods had very high loads of volcanic debris derived both from this and previous eruptions and can thus be classified as lahars. The floods reached unusually high water levels and caused substantial geomorphic change in the Belham Valley. Detailed rainfall and geomorphological data, coupled with the precise timing of events and yewitness accounts have facilitated an assessment of the relative importance of rainfall volume and intensity, older volcanic debris, pre- and syn-flood tephra fall and the extent of pre-flood vegetation damage for the behavior of this and subsequent sediment-laden floods in this setting. The change in runoff behavior was controlled by preexisting vegetation damage and synchronous tephra fall and this was critically important in controlling the impact of these flash floods. Although rainfall intensity and volume have some control on flood occurrence they are not the critical control on flash flood impact on the geomorphology in the Belham Valley. A significant conclusion of this study is that the extreme nature of the flash floods was not caused by extreme rainfall (as is commonly believed to be the primary cause of flash floods) but rather it was the result of changed runoff behaviour caused by the widespread syn-flood tephra deposition and importantly the widespread vegetation damage by volcanic-associated acid rain in the preceding weeks.  相似文献   
975.
Over decades and centuries, the mean depth of estuaries changes due to sea-level rise, land subsidence, infilling, and dredging projects. These processes produce changes in relative roughness (friction) and mixing, resulting in fundamental changes in the characteristics of the horizontal (velocity) and vertical tides (sea surface elevation) and the dynamics of sediment trapping. To investigate such changes, a 2DV model is developed. The model equations consist of the width-averaged shallow water equations and a sediment balance equation. Together with the condition of morphodynamic equilibrium, these equations are solved analytically by making a regular expansion of the various physical variables in a small parameter. Using these analytic solutions, we are able to gain insight into the fundamental physical processes resulting in sediment trapping in an estuary by studying various forcings separately. As a case study, we consider the Ems estuary. Between 1980 and 2005, successive deepening of the Ems estuary has significantly altered the tidal and sediment dynamics. The tidal range and the surface sediment concentration has increased and the position of the turbidity zone has shifted into the freshwater zone. The model is used to determine the causes of these historical changes. It is found that the increase of the tidal amplitude toward the end of the embayment is the combined effect of the deepening of the estuary and a 37% and 50% reduction in the vertical eddy viscosity and stress parameter, respectively. The physical mechanism resulting in the trapping of sediment, the number of trapping regions, and their sensitivity to grain size are explained by careful analysis of the various contributions of the residual sediment transport. It is found that sediment is trapped in the estuary by a delicate balance between the M 2 transport and the residual transport for fine sediment ( $\emph{w}_s=0.2$  mm s???1) and the residual, M 2 and M 4 transports for coarser sediment ( $\emph{w}_s=2$  mm s???1). The upstream movement of the estuarine turbidity maximum into the freshwater zone in 2005 is mainly the result of changes in tidal asymmetry. Moreover, the difference between the sediment distribution for different grain sizes in the same year can be attributed to changes in the temporal settling lag.  相似文献   
976.
Accurate forecasts of solar irradiance are required for electric utilities to economically integrate substantial amounts of solar power into their power generation portfolios. A common failing of numerical weather models is the prediction of scattered clouds at the top of deep PBL which are generally difficult to be resolved due to complicated processes in the planetary boundary layer. We improved turbulence parameterization for better predicting solar irradiance during the scattered clouds’ events using the Weather Research and Forecasting model. Sensitivity tests show that increasing the exchange coefficient leads to enhanced vertical mixing and a deeper mixed layer. At the top of mixed layer, an adiabatically ascending air parcel achieved the water vapor saturation and finally scattered cloud is generated.  相似文献   
977.
978.
The fate of inflows into lakes has been extensively studied during summer stratification but has seen relatively little focus during the weak winter stratification, with or without ice-cover. Field observations are presented of groundwater inflow into a shallow bay of a subarctic lake. Atmospheric forcing of the bay during the study period was extremely variable and coincided with spring ice-cover break-up. Two dominant wind regimes were identified; (1) weak wind-forcing (wind speed <5 m s−1 or land-fast ice-cover), and (2) strong wind-forcing (wind speed >5 m s−1 and open water). At a relatively constant temperature of ~3.3°C, the groundwater inflow was closer to the temperature of maximum density than the water in the main body of the lake, which during the observed winter stratification is ~1.2°C. During weak wind-forcing, the stratification within Silfra Bay approximated two-layers as this denser groundwater formed a negatively buoyant underflow. A calculated underflow entrainment rate of 2.8 × 10−3 agrees well with other underflow studies. During strong wind-forcing, the water column out to the mouth of the bay became weakly stratified as the underflow was entrained vertically by wind-stirring. Observed periods of mixing can be predicted to occur when turbulent kinetic energy (TKE) production by wind stirring integrated over the underflow hydraulic residence time in the bay exceeds the potential energy associated with the stratification. A decrease of ice cover, as observed in the studied subarctic lake over the last decade, will result in the underflow being more frequently exposed to the strong wind-forcing regime during winter, thereby altering the winter distribution of groundwater inflow within the lake.  相似文献   
979.
In recent years, the measurement of rotational components of earthquake-induced ground motion became a reality due to high-resolution ring laser gyroscopes. As a consequence of the fact that they exploit the Sagnac effect, these devices are entirely insensitive to translational motion and are able to measure the rotation rate with high linearity and accuracy over a wide frequency band. During the last decade, a substantial number of earthquakes were recorded by the large ring lasers located in Germany, New Zealand, and USA, and the subsequent data analysis demonstrated reliability and consistency of the results with respect to theoretical models. However, most of the observations recorded teleseismic events in the far-field. The substantial mass and the size of these active interferometers make their near-field application difficult. Therefore, the passive counterparts of ring lasers, the fiber optic gyros can be used for seismic applications where the mobility is more important than extreme precision. These sensors provide reasonable accuracy and are small in size, which makes them perfect candidates for strong motion applications. The other advantage of fiber optic gyroscopes is that if the earthquake is local and shallow (like one occurred early this year at Canterbury, New Zealand), the large ring lasers simply do not have the dynamic range??the effect is far too large for these instruments. In this paper, we analyze a typical commercially available tactical grade fiber optic gyroscope (VG-951) with respect to the seismic rotation measurement requirements. The initial test results including translation and upper bounds of seismic rotation sensitivity are presented. The advantages and limitations of tactical grade fiber optic gyroscope as seismic rotation sensor are discussed.  相似文献   
980.
We examined the behavior of different fractal dimensions when applied to study features of earthquake spatial distribution on different types of data. We first examined simulated spatial fields of points of different clustering level, following the so called Soneira-Peebles model. The model was chosen because it displays some similarity to the real clustering structure of earthquakes occurring on hierarchically ordered faults. The analysis of the capacity, clustering and correlation dimensions revealed that their behavior did not completely correlate with the clustering level of the simulated data sets. We also studied temporal variations of the fractal coefficients, characterizing the spatial distribution of the 1999 İzmit-Düzce aftershock sequence. The calculated coefficient values demonstrated analogous behavior like for the simulated data. They exposed different variability in time, but for all of them a systematic fluctuation was observed before the occurrence of the Düzce earthquake. Our analysis revealed that although fractal coefficients could be applied to measure earthquake clustering, they should be used with caution, trying to figure out the best coefficient for a certain data set.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号