首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   175篇
  免费   11篇
  国内免费   1篇
测绘学   7篇
大气科学   16篇
地球物理   33篇
地质学   65篇
海洋学   15篇
天文学   26篇
自然地理   25篇
  2023年   1篇
  2022年   2篇
  2021年   3篇
  2020年   5篇
  2019年   3篇
  2018年   2篇
  2017年   7篇
  2016年   9篇
  2015年   3篇
  2014年   5篇
  2013年   11篇
  2012年   11篇
  2011年   4篇
  2010年   12篇
  2009年   17篇
  2008年   16篇
  2007年   15篇
  2006年   9篇
  2005年   7篇
  2004年   6篇
  2003年   5篇
  2002年   7篇
  2000年   6篇
  1999年   1篇
  1998年   3篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1989年   1篇
  1986年   4篇
  1985年   1篇
  1982年   1篇
  1971年   1篇
排序方式: 共有187条查询结果,搜索用时 15 毫秒
81.
Theoretical analysis and computational simulations have been carried out to investigate how medium and pore‐fluid compressibility affects the chemical‐dissolution front propagation, which is associated with a fully‐coupled nonlinear problem between porosity, pore‐fluid pressure, pore‐fluid density and reactive chemical‐species transport within a deformable and fluid‐saturated porous medium. When the fully‐coupled nonlinear system is in a subcritical state, some analytical solutions have been derived for a special case, in which the ratio of the equilibrium concentration to the solid molar density of the chemical species is approaching zero. To investigate the effect of either medium compressibility or pore‐fluid compressibility on the evolutions of chemical dissolution fronts in supercritical chemical dissolution systems, numerical algorithms and procedures have been also proposed. The related theoretical and numerical results have demonstrated that: (i) not only can pore‐fluid compressibility affect the propagating speeds of chemical dissolution fronts in both subcritical and supercritical systems, but also it can affect the growth and amplitudes of irregular chemical dissolution fronts in supercritical systems; (ii) medium compressibility may have a little influence on the propagating speeds of chemical dissolution fronts, but it can have significant effects on the growth and amplitudes of irregular chemical dissolution fronts in supercritical systems; and (iii) both medium and pore‐fluid compressibility may stabilize irregular chemical‐dissolution‐fronts in supercritical chemical dissolution systems. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
82.
Arsenic is a prevalent contaminant at US Superfund sites where remediation by pump and treat systems is often complicated by slow desorption of As from Fe and Al (hydr)oxides in aquifer solids. Chemical amendments that either compete with As for sorption sites or dissolve Fe and Al (hydr)oxides can increase As mobility and improve pump and treat remediation efficiency. The goal of this work was to determine optimal amendments for improving pump and treat at As contaminated sites such as the Vineland Chemical Co. Superfund site in southern New Jersey. Extraction and column experiments were performed using As contaminated aquifer solids (81 ± 1 mg/kg), site groundwater, and either phosphate (NaH2PO4·H2O) or oxalic acid (C2H2O4·2H2O). In extraction experiments, phosphate mobilized between 11% and 94% of As from the aquifer solids depending on phosphate concentration and extraction time (1 mM–1 M; 1–24 h) and oxalic acid mobilized between 38% and 102% depending on oxalic acid concentration and extraction time (1–400 mM; 1–24 h). In column experiments, phosphate additions induced more As mobilization in the first few pore volumes but oxalic acid was more effective at mobilizing As overall and at lower amendment concentrations. At the end of the laboratory column experiments, 48% of As had been mobilized from the aquifer sediments with 100 mM phosphate and 88% had been mobilized with 10 mM oxalic acid compared with 5% with ambient groundwater alone. Furthermore, simple extrapolations based on pore volumes suggest that chemical treatments could lower the time necessary for clean up at the Vineland site from 600 a with ambient groundwater alone to potentially as little as 4 a with 10 mM oxalic acid.  相似文献   
83.
Garnet-bearing mantle xenoliths have been recovered from Quaternary alkali basalts, both within and peripheral to the Hangay dome of central Mongolia. Microfabric analysis and thermobaromery, combining empirical thermobarometers and the self-consistent dataset of THERMOCALC, indicate that garnet websterites from the Shavaryn-Tsaram volcanic centre at the dome core were formed in the spinel-lherzolite upper mantle at pressures of 17–18 kbars and temperatures of 1,070–1,090°C, whereas garnet lherzolites were derived from greater depths (18–20 kbars). Garnet lherzolites from the Baga Togo Uul vents near the dome edge were formed at 18–22 kbars under significantly cooler conditions (960–1,000°C). These xenoliths reveal reaction coronas of (1) orthopyroxene, clinopyroxene, plagioclase and spinel mantling garnets; (2) spongy rims of olivine replacing orthopyroxene and (3) low-Na, low-Al clinopyroxene replacing primary clinopyroxene. Trace-element abundances indicate that clinopyroxene from these coronas is in chemical equilibrium with the host magma. The thermobarometric and textural data suggest that lherzolite xenoliths from both sites were derived from depths of 60–70 km and entrained in magma at 1,200–1,300°C. The average rate of ascent, as determined by olivine zoning, lies in the range 0.2–0.3 m s−1. The contrast in thermal profiles of the upper mantle between the two sites is consistent with a mantle plume beneath the Hangay dome with elevated thermal conditions beneath the core of the dome being comparable to estimates of the Pleistocene geotherm beneath the Baikal rift.  相似文献   
84.
From a watershed perspective, Boston Harbor, MA, USA is an ideal site for eelgrass restoration due to major wastewater improvements. Therefore, by focusing on site selection and transplant methods, high survival and expansion rates were recorded at four large eelgrass-restoration sites planted in Boston Harbor as partial mitigation for a pipeline construction project. Transplanted sites met and exceeded reference and donor bed habitat function after 2 years. Hand planting and seeding in checkerboard-patterned transplant plots were efficient and effective methods for jump-starting eelgrass growth over large areas. Although restoration through planting can be successful, it is highly site specific. Even using a published site-selection model, intensive fieldwork was required to identify sites at fine enough scale to ensure successful planting. Given the effort required to identify scarce potential sites, we recommend that future focus includes alternative mitigation strategies that can more adequately prevent eelgrass loss and address water quality degradation which is the leading cause of dieback, site unsuitability for planting, and lack of natural re-colonization.  相似文献   
85.
86.
The discovery of a molecular oxygen atmosphere around Saturn's rings has important implications for the electrodynamics of the ring system. Its existence was inferred from the Cassini in situ detection of molecular oxygen ions above the rings during Saturn Orbit Insertion in 2004. Molecular oxygen is difficult to observe remotely, and theoretical estimates have yielded only a lower limit (Nn?1013 cm−2) to the O2 column density. Comparison with observations has previously concerned matching ion densities at spacecraft altitudes far larger than the scale height of the neutral atmosphere. This is further complicated by charged particle propagation effects in Saturn's offset magnetic field. In this study we adopt a complementary approach, by focusing on bulk atmospheric properties and using additional aspects of the Cassini observations to place an upper limit on the column density. We develop a simple analytic model of the molecular atmosphere and its photo-ionization and dissociation products, with Nn a free parameter. Heating of the neutrals by viscous stirring, cooling by collisions with the rings, and torquing by collisions with pickup ions are all included in the model. We limit the neutral scale height to h?3000 km using the INMS neutral density nondetection over the A ring. A first upper limit to the neutral column is derived by using our model to reassess O2 production and loss rates. Two further limits are then obtained from Cassini observations: corotation of the observed ions with the planet implies that the height-integrated conductivity of the ring atmosphere is less than that of Saturn's ionosphere; and the nondetection of fluorescent atomic oxygen over the rings constrains the molecular column from which it is produced via photo-dissociation. These latter limits are independent of production and loss rates and are only weakly dependent on temperature. From the three independent methods described, we obtain similar limits: Nn?2×1015 cm−2. The mean free path for collisions between neutrals thus cannot be very much smaller than the scale height.  相似文献   
87.
We performed high-resolution simulations of two stellar collisions relevant for stars in globular clusters. We considered one head-on collision and one off-axis collision between two 0.6-M main-sequence stars. We show that a resolution of about 100 000 particles is sufficient for most studies of the structure and evolution of blue stragglers. We demonstrate conclusively that collision products between main-sequence stars in globular clusters do not have surface convection zones larger than 0.004 M after the collision, nor do they develop convection zones during the 'pre-main-sequence' thermal relaxation phase of their post-collision evolution. Therefore, any mechanism which requires a surface convection zone (i.e. chemical mixing or angular momentum loss via a magnetic wind) cannot operate in these stars. We show that no disc of material surrounding the collision product is produced in off-axis collisions. The lack of both a convection zone and a disc proves a continuing problem for the angular momentum evolution of blue stragglers in globular clusters.  相似文献   
88.
Alison J Williams 《Area》2010,42(1):51-59
The implementation of policies of pre-emption and securitisation by a number of states has led to an increase in the number of aerial incursions by one state's air force into another state's territory in recent years, often occurring before and, indeed, instead of ground incursions. This paper argues that it is vital that we conceptualise territory as a three-dimensional volume, rather than simply a flat area, in order to enable an analysis of how these events impact state sovereignty. The central contention of the paper is to extend recent work on territorial integrity and contingent sovereignty into this aerial dimension. A number of brief case studies are provided to illustrate how different incursion practices actively violate territorial integrity or render state sovereignty contingent. The conclusion seeks to answer the question of whether these incidents imply a crisis in aerial sovereignty or whether they confirm the chronic decline of this norm of international law.  相似文献   
89.
There is currently much debate about the ecological advantages for reef corals of hosting multiple types of the symbiotic dinoflagellate Symbiodinium. Amongst these is their apparent capacity to tolerate higher than normal water temperatures. There is strong photokinetic evidence that the trait of heat‐tolerance in plants is accompanied by energetic tradeoffs but little such evidence yet exists for corals. We use rapid light curves (RLCs) to investigate the photokinetic basis for thermo‐tolerance in the reef coral Acropora millepora with symbionts of contrasting thermal tolerance for which there are measured differences in energetics. Our results show that under non‐stressful temperatures, corals with heat‐tolerant type D Symbiodinium had a 41% lower maximum relative electron transport rate (rETRmax) and lower light absorption efficiency (α) due to lower cell Chl a content compared with corals with heat‐sensitive type C2 symbionts. Our results provide support for a photokinetic link between heat tolerance and deficits in holobiont (coral + symbiont) growth, lipid stores and reproduction. Reduced electron transport rate and light absorption capacity may be genotype‐specific attributes that enable clade D symbionts and their cnidarian hosts to cope with temperature stress but they inherently influence the photosynthetic function of the symbionts and thus have negative downstream effects on the coral.  相似文献   
90.
Using galaxy samples drawn from the Sloan Digital Sky Survey and the DEEP2 Galaxy Redshift Survey, we study the relationship between star formation and environment at   z ∼ 0.1  and 1. We estimate the total star formation rate (SFR) and specific star formation rate (sSFR) for each galaxy according to the measured [O  ii ]λ 3727 Å nebular line luminosity, corrected using empirical calibrations to match more robust SFR indicators. Echoing previous results, we find that in the local Universe star formation depends on environment such that galaxies in regions of higher overdensity, on average, have lower SFRs and longer star formation time-scales than their counterparts in lower density regions. At   z ∼ 1  , we show that the relationship between sSFR and environment mirrors that found locally. However, we discover that the relationship between total SFR and overdensity at   z ∼ 1  is inverted relative to the local relation. This observed evolution in the SFR–density relation is driven, in part, by a population of bright, blue galaxies in dense environments at   z ∼ 1  . This population, which lacks a counterpart at   z ∼ 0  , is thought to evolve into members of the red sequence from   z ∼ 1  to ∼0. Finally, we conclude that environment does not play a dominant role in the cosmic star formation history at   z < 1  : the dependence of the mean galaxy SFR on local galaxy density at constant redshift is small compared to the decline in the global SFR space density over the last 7 Gyr.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号