首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2633篇
  免费   147篇
  国内免费   32篇
测绘学   93篇
大气科学   294篇
地球物理   669篇
地质学   801篇
海洋学   219篇
天文学   394篇
综合类   6篇
自然地理   336篇
  2022年   14篇
  2021年   50篇
  2020年   61篇
  2019年   54篇
  2018年   67篇
  2017年   86篇
  2016年   106篇
  2015年   88篇
  2014年   99篇
  2013年   189篇
  2012年   118篇
  2011年   161篇
  2010年   120篇
  2009年   143篇
  2008年   145篇
  2007年   143篇
  2006年   137篇
  2005年   110篇
  2004年   93篇
  2003年   98篇
  2002年   81篇
  2001年   52篇
  2000年   62篇
  1999年   39篇
  1998年   35篇
  1997年   31篇
  1996年   29篇
  1995年   31篇
  1994年   21篇
  1993年   20篇
  1992年   13篇
  1991年   18篇
  1990年   17篇
  1989年   31篇
  1988年   14篇
  1987年   20篇
  1986年   13篇
  1985年   24篇
  1984年   17篇
  1983年   18篇
  1982年   13篇
  1981年   18篇
  1980年   10篇
  1979年   15篇
  1978年   10篇
  1977年   9篇
  1975年   10篇
  1974年   9篇
  1973年   9篇
  1972年   8篇
排序方式: 共有2812条查询结果,搜索用时 15 毫秒
991.
992.
The irregular seafloor of the narrow Irish Sea on the NW European Shelf has been documented over several decades. From recently collected swath bathymetry data, very large trochoidal, nearly symmetrical sediment waves are observed in many parts of the Irish Sea and appear similar to those described from other continental shelf seas in North America that were covered by glacigenic sediments during the Last Glacial Maximum. Swath multibeam and single beam bathymetry data, backscatter intensity, shallow seismic imagery, video footage and sediment cores from the Irish Sea high sediment waves have been integrated to identify their genesis with reference to present and past hydrodynamic variability. From cross-sectional profiles over asymmetrical sediment waves in the Irish Sea the direction of asymmetry is used to map residual bed stress directions and associated bedload transport paths. Irish Sea peak bed stress vectors were generated using a two-dimensional palaeo-tidal model for the NW European shelf seas and compare well with the observations. Tidally induced bed stresses are modelled to have increased between 7–10 ka BP, to be nearly symmetrical in magnitude and to have reversed in dominant direction on a millennial scale. These environmental conditions during the post-glacial marine transgression are suggested here to help comprehend the construction of the very large sediment waves, with local variations due to differences in sediment grain size, sediment supply, water depth and intensified currents due to seafloor slopes. Model parameterisation using an open ocean boundary with time-dependent tidal changes and the implementation of high-resolution bathymetric information will improve future models of small-scale bed shear stress patterns and improve the predictive value of such modelling efforts.  相似文献   
993.
Deception Island is a volcanic island with a flooded caldera that has a complex geological setting in Bransfield Strait, Antarctica. We use P-wave arrivals recorded on land and seafloor seismometers from airgun shots within the caldera and around the island to invert for the P-wave velocity structure along two orthogonal profiles. The results show that there is a sharp increase in velocity to the north of the caldera which coincides with a regional normal fault that defines the northwestern boundary of the Bransfield Strait backarc basin. There is a low-velocity region beneath the caldera extending from the seafloor to > 4 km depth with a maximum negative anomaly of 1 km/s. Refracted arrivals are consistent with a 1.2-km-thick layer of low-velocity sediments and pyroclastites infilling the caldera. Synthetic inversions show that this layer accounts for only a small portion of the velocity anomaly, implying that there is a significant region of low velocities at greater depths. Further synthetic inversions and melt fraction calculations are consistent with, but do not require, the presence of an extensive magma chamber beneath the caldera that extends downwards from ≤ 2 km depth.  相似文献   
994.
In many anoxic sedimentary environments, the onset of sulfate reduction, and pyritization of detrital iron-bearing minerals, leads to a precipitous decline in magnetic mineral concentration during early diagenesis. The usefulness of the surviving paleomagnetic record in such environments is usually argued to depend on how much of the primary detrital magnetic assemblage survives diagenetic dissolution. Detailed rock magnetic and electron microscope analyses of rapidly deposited (~ 7 cm/kyr) latest Pleistocene–Holocene sediments from the continental margins of Oman (22°22.4′N, 60°08.0′E) and northern California (38°24.8′N, 123°58.2′W) demonstrate that pyritization during early diagenesis also leads to the progressive down-core growth of the ferrimagnetic iron sulfide greigite. Greigite growth begins with nucleation of large concentrations of superparamagnetic (SP) nanoparticles at the inferred position of the sulfate–methane transition, which can explain the apparently paradoxical suggestion that diagenetically reduced sediments contain enhanced concentrations of SP particles. Looping of hysteresis parameters on a “Day” plot records the dissolution of single domain (SD) (titano-)magnetite and the formation of SP greigite, which then slowly and progressively grows through its SD blocking volume and acquires a stable paleomagnetic signal. This looping trend is also evident in data from several published records (Oregon margin, Korea Strait, Japan Sea, Niger Fan, Argentine margin, and the Ontong–Java Plateau), indicating that these processes may be widespread in reducing environments. Our observations have profound implications for paleomagnetic records from sulfate-reducing environments. The paleomagnetic signal recorded by greigite is offset from the age of the surrounding sediments by 10's of kyr, and ongoing growth of greigite at depth results in smoothing of the recorded signal over intervals of 10's to 100's of kyr. We therefore expect the presence of greigite to compromise paleomagnetic records in a wide range of settings that have undergone reductive diagenesis.  相似文献   
995.
996.
997.
998.
Beach‐ridge systems are important geo‐archives providing evidence for past wave climate including catastrophic storm flood events. This study investigates the morphological impacts of the 1872 Baltic storm flood on a beach‐ridge system (sandy spit) in south‐eastern Denmark and evaluates the frequency of extreme storm flood events in the area over a longer time perspective. This paper combines field studies of morphology and sedimentary deposits, studies of historical maps, digital terrain model, ground‐penetrating radar profiles, and luminescence dating. Sea water reached 2.8 m above mean sea level (amsl) during peak inundation and, based on studies of the morphological impacts of the 1872 storm flood, the event can be divided into four phases. Phase 1: increasing mean water levels and wave activity at the beach brought sediments from the beach (intertidal bars and normal berm) higher up in the profile and led to the formation of a storm‐berm. Phase 2: water levels further increased and sediment in the upper part of the profile continued to build up the storm‐berm. Phase 3: water levels now reached the top of the dune ridge and were well above the storm‐berm level. Sea water was breaching the dune ridge at several sites and wash‐over fans were generated until a level where the mean water level had dropped too much. Phase 4: the non‐vegetated wash‐over fans functioned as pathways for aeolian sand transport and relatively high dunes were formed in particular along the margins of the fan where aeolian sand was trapped by existing vegetation. The studied beach‐ridge system records about 4500 years of accumulation; the storm flood sediments described are unique suggesting that the 1872 Baltic storm flood event was an extreme event. Thus studies of beach‐ridge systems form a new source for understanding storm surge risk. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
999.
This article investigates landscape characteristics and sediment composition in the western Greater Caucasus by using multiple methods at different timescales. Our ultimate goal is to compare short‐term versus long‐term trends in erosional processes and to reconstruct spatio‐temporal changes in sediment fluxes as controlled by partitioning of crustal shortening and rock uplift in the orogenic belt. Areas of active recent uplift are assessed by quantitative geomorphological techniques [digital elevation model (DEM) analysis of stream profiles and their deviation from equilibrium] and compared with regions of rapid exhumation over longer time intervals as previously determined by fission‐track and cosmogenic‐nuclide analyses. Complementary information from petrographic and heavy‐mineral analyses of modern sands and ancient sandstones is used to evaluate erosion integrated throughout the history of the orogen. River catchments displaying the highest relief, as shown by channel‐steepness indices, correspond with the areas of most rapid exhumation as outlined by thermochronological data. The region of high stream gradients is spatially associated with the highest topography around Mount Elbrus, where sedimentary cover strata have long been completely eroded and river sediments display the highest metamorphic indices and generally high heavy‐mineral concentrations. This study reinforces the suggestion that the bedrock–channel network can reveal much of the evolution of tectonically active landscapes, and implies that the controls on channel gradient ultimately dictate the topography and the relief along the Greater Caucasus. Our integrated datasets, obtained during a decade of continuing research, display a general agreement and regularity of erosion patterns through time, and consistently indicate westward decreasing rates of erosional unroofing from the central part of the range to the Black Sea. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
1000.
Blowouts are depressions that occur on coastal dunes, deserts and grasslands. The absence of vegetation in blowouts permits high speed winds to entrain and remove sediment. Whereas much research has examined patterns of wind flow and sediment transport on the stoss slopes and lee of sand dunes, no study has yet investigated the connections between secondary air‐flow structures and sediment transport in a blowout where zones of streamline compression, expansion and steering are less clearly delineated. In this study we investigated the variability of sediment flux and its relation to near‐surface wind speed and turbulence within a trough blowout during wind flow that was oblique to the axis of the blowout. Wind flow was measured using six, three‐dimensional (3D) ultrasonic anemometers while sediment flux by eight sand traps, all operating at 25 Hz. Results demonstrated that sediment flux rates were highly variable throughout the blowout deflation basin, even over short distances (< 0.5 m). Where flow was steadiest, flux was greatest. Consequently the highest rates of sediment transport were recorded on the erosional wall crest where flow was compressed and accelerated. The strength of correlation between sediment flux and wind parameter improved with an increase in averaging interval, from 10 seconds to 1 minute. At an interval of 10 seconds, however, wind speed correlated best with flux at seven of eight traps, whereas at an interval of one minute Turbulent Kinetic Energy (TKE) provided the best correlation with flux at six of the eight traps. Correlation between sediment flux and wind parameters was best in the centre of the blowout and poorest on the erosional wall crest. The evidence from this paper suggests, for the first time, that TKE may be a better predictor of sediment transport at minute scale averaging intervals, particularly over landforms where wind flow is highly turbulent. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号