首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3309篇
  免费   191篇
  国内免费   17篇
测绘学   218篇
大气科学   251篇
地球物理   888篇
地质学   1194篇
海洋学   213篇
天文学   530篇
综合类   36篇
自然地理   187篇
  2024年   5篇
  2023年   17篇
  2022年   37篇
  2021年   69篇
  2020年   79篇
  2019年   74篇
  2018年   181篇
  2017年   140篇
  2016年   233篇
  2015年   199篇
  2014年   220篇
  2013年   255篇
  2012年   212篇
  2011年   228篇
  2010年   180篇
  2009年   201篇
  2008年   146篇
  2007年   118篇
  2006年   103篇
  2005年   66篇
  2004年   94篇
  2003年   63篇
  2002年   70篇
  2001年   54篇
  2000年   39篇
  1999年   31篇
  1998年   50篇
  1997年   35篇
  1996年   23篇
  1995年   25篇
  1994年   23篇
  1993年   13篇
  1992年   21篇
  1991年   12篇
  1990年   24篇
  1989年   13篇
  1988年   10篇
  1987年   11篇
  1985年   15篇
  1984年   5篇
  1983年   13篇
  1982年   13篇
  1981年   5篇
  1980年   12篇
  1979年   6篇
  1978年   8篇
  1977年   7篇
  1975年   5篇
  1972年   14篇
  1950年   4篇
排序方式: 共有3517条查询结果,搜索用时 15 毫秒
101.
Sedimentological, mineralogical, stable carbon and oxygen isotope determinations and biomarker analyses were performed on siderite concretions occurring in terrestrial silts to understand their formation and to characterize the sedimentary and diagenetic conditions favouring their growth. High δ13C values (6·4‰ on average) indicate that siderite precipitated in an anoxic environment where bacterial methanogenesis operated. The development of anoxic conditions during shallow burial was induced by a change in sedimentary environment from flood plain to swamp, related to a rise of the ground‐water table. Large amounts of decaying plant debris led to efficient oxygen consumption within the pore‐water in the peat. Oxygen depletion, in combination with a decrease in sedimentation rate, promoted anoxic diagenetic conditions under the swamp and favoured abundant siderite precipitation. This shows how a change in sedimentary conditions can have a profound impact on the early‐diagenetic environment and carbonate authigenesis. The concretions contain numerous rhizoliths; they are cemented with calcium‐rhodochrosite, a feature which has not been reported before. The rhodochrosite cement has negative δ13C values (?16·5‰ on average) and precipitated in suboxic conditions due to microbial degradation of roots coupled to manganese reduction. The exceptional preservation of the epidermis/exodermis and xylem vessels of former root tissues indicates that the rhodochrosite formed shortly after the death of a root in water‐logged sediments. Rhodochrosite precipitated during the initial stages of concretionary growth in suboxic microenvironments within roots, while siderite cementation occurred simultaneously around them in anoxic conditions. These suboxic microenvironments developed because oxygen was transported from the overlying oxygenated soil into sediments saturated with anoxic water via roots acting as permeable conduits. This model explains how separate generations of carbonate cements having different mineralogy and isotopic compositions, which would conventionally be regarded as cements precipitated sequentially in different diagenetic zones during gradual burial, can form simultaneously in shallow burial settings where strong redox gradients exist around vertically oriented permeable root structures.  相似文献   
102.
The Ombrone palaeovalley was incised during the last glacial sea‐level fall and was infilled during the subsequent Late‐glacial to Holocene transgression. A detailed sedimentological and stratigraphic study of two cores along the palaeovalley axis led to reconstruction of the post‐Last Glacial Maximum valley‐fill history. Stratigraphic correlations show remarkable similarity in the Late‐glacial to early‐Holocene succession, but discrepancy in the Holocene portion of the valley fill. Above the palaeovalley floor, about 60 m below sea‐level, Late‐glacial sedimentation is recorded by an unusually thick alluvial succession dated back to ca 18 cal kyr bp . The Holocene onset was followed by the retrogradational shift from alluvial to coastal facies. In seaward core OM1, the transition from inner to outer estuarine environments marks the maximum deepening of the system. By comparison, in landward core OM2, the emplacement of estuarine conditions was interrupted by renewed continental sedimentation. Swamp to lacustrine facies, stratigraphically equivalent to the fully estuarine facies of core OM1, represent the proximal expression of the maximum flooding zone. This succession reflects location in a confined segment of the valley, just landward of the confluence with a tributary valley. It is likely that sudden sediment input from the tributary produced a topographic threshold, damming the main valley course and isolating its landward segment from the sea. The seaward portion of the Ombrone palaeovalley presents the typical estuarine backfilling succession of allogenically controlled incised valleys. In contrast, in the landward portion of the system, local dynamics completely overwhelmed the sea‐level signal, following marine ingression. This study highlights the complexity of palaeovalley systems, where local morphologies, changes in catchment areas, drainage systems and tributary valleys may produce facies patterns significantly different from the general stratigraphic organization depicted by traditional sequence‐stratigraphic models.  相似文献   
103.
Complex interactions of climate and volcanic activity have shaped the environment of Iceland during the Holocene. Palaeoecological records from Iceland offer a unique look at a Holocene environment that was uninhabited by humans and free of mammal herbivores until about AD 870. We present a new reconstruction of Holocene vegetation and landscape dynamics from a small lake, Barðalækjartjörn, located near the highland margin in Northwest Iceland. A multi‐proxy approach was used to reconstruct vegetation based on pollen and plant macrofossil analysis and landscape stability based on lithological proxies. The record covers the period c. 10 300–200 cal. a BP. For the first two millennia aeolian processes probably played a part in vegetation development. This period is characterized by high input of minerogenic material into the lake and a vegetation assemblage in which plants tolerant of aeolian deposition are prominent. Betula pubescens woodland reached a maximum between c. 7400 and 6500 cal. a BP. Betula nana‐dominated dwarf shrub heath replaced woodland after c. 4000 cal. a BP, following the onset of Neoglaciation. Land use following human settlement caused an environmental shift at the highland margin. Betula pubescens probably disappeared from the vicinity of the lake soon thereafter. Large‐scale soil erosion began at c. 1000 cal. a BP in the wake of human activities, such as introduction of grazing livestock and woodcutting. This study offers an important long‐term perspective of the development of the highland ecosystem under both wholly natural and human‐influenced conditions.  相似文献   
104.
105.
106.
107.
108.
109.
IAG Newsletter     
Gyula Tóth 《Journal of Geodesy》2016,90(12):1419-1421
  相似文献   
110.
IAG Newsletter     
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号