首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71篇
  免费   0篇
测绘学   5篇
大气科学   2篇
地球物理   12篇
地质学   30篇
天文学   18篇
自然地理   4篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   4篇
  2017年   1篇
  2016年   5篇
  2014年   4篇
  2013年   3篇
  2012年   2篇
  2011年   4篇
  2010年   4篇
  2009年   6篇
  2008年   3篇
  2007年   2篇
  2006年   1篇
  2005年   7篇
  2004年   1篇
  2002年   1篇
  1997年   3篇
  1996年   3篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   3篇
  1986年   3篇
  1985年   2篇
排序方式: 共有71条查询结果,搜索用时 31 毫秒
61.
We present the volcanic ash and tsunami record of the Minoan Late Bronze Age Eruption of Santorini (LBAES) in a distal setting in southwestern Turkey. In one of the drilled cores at the Letoon Hellenic antique site on Eşençay Delta, we encountered a 4 cm thick tephra deposit underlain by 46 cm thick tsunami-deposited sand (tsunamite), and an organic-rich layer that we 14C dated to 3295 ± 30 bp or 1633 bc. The relationship between Santorini distal volcanic ash and underlying tsunamite is described and interpreted. LBAES occurred in four main phases: (1) plinian; (2) phreatomagmatic; (3) phreatomagmatic with mudflows; and (4) ignimbritic flows and co-ignimbrite tephra falls. In this study, we aim to understand which eruptive phases generate distal ash during the Minoan eruptive sequence by examining the 3D surface morphology of ash formed by different fragmentation processes. To that end, we used numerous statistical multivariates, 3D fractal dimension of roughness, and a new textural parameter of surface area-3D/plotted area-2D to characterise the eruption dynamics. Based on ash surface morphologies and the calculated statistical parameters, we propose that that distal ash is represented by a single layer composed of well-mixed (coarse to fine) magmatic and phreatomagmatic ash.  相似文献   
62.
Finite element numerical simulation has been carried out to investigate quantitatively the response of the three-electrode laterolog borehole tool (LL3) on radial and vertical heterogeneity of the rock. In order to calculate the apparent resistivity from the electric potential and the current discharge of the measurement electrode the probe coefficient of the LL3 tool with finite electrode extent was determined. Two independent methods, a finite element modeling and a semi-analytical solution, resulted in the probe coefficient of approx. 0.15 m with a relative deviation of 2.4% due to the different geometry, resolution and electronics of the models. It was established that LL3 is only slightly sensitive to the presence of mud when the borehole diameter is d ≤ 30 cm and the ratio of the resistivity of rock and the borehole mud is 1 ≤ R t/R m ≤ 1000. Vertical heterogeneity test pointed out that the layer boundaries can be localized exactly even for thin bedded layer (with a thickness of 1 m) and the presence of low-resistive borehole mud. Correction factors were suggested to decrease the biasing effect of the low-resistive borehole mud and the shoulder beds on the apparent resistivity observed by LL3. Finally, it was verified that the probe has large penetration depth with excellent vertical resolution, what explains the enduring popularity of the LL3 tool in well logging.  相似文献   
63.
Modelling palaeoglaciers in mountainous terrain is challenging due to the need for detailed ice flow computations in relatively narrow and steep valleys, high-resolution climate estimations, knowledge of pre-ice topography, and proxy-based palaeoclimate forcing. The Parallel Ice Sheet Model (PISM), a numerical model that approximates glacier sliding and deformation to simulate large ice sheets such as Greenland and Antarctica, was recently adapted to alpine environments. In an attempt to reconstruct the climate conditions during the Last Glacial Maximum (LGM) on Mount Dedegöl in SW Turkey, we used PISM and explored palaeoglacier dynamics at high spatial resolution (100 m) in a relatively small domain (225 km2). Palaeoice-flow fields were modelled as a function of present temperature and precipitation. Nine different palaeoclimate simulations were run to reach the steady-state glacier extents and the modelled glacial areas were compared with the field-based and chronologically well-established ice extents. Although our results provide a non-unique solution, best-fit scenarios indicate that the LGM climate on Mount Dedegöl was between 9.2 and 10.6 °C colder than today, while precipitation levels were the same as today. More humid (20% wetter) or arid (20% drier) conditions than today bring the palaeotemperature estimates to 7.7–8.8 or 11.5–13.2 °C lower than present, respectively.  相似文献   
64.
Many problems in mining and civil engineering require using numerical stress analysis methods to repeatedly solve large models. Widespread acceptance of tunneling methods, such as New Austrian Tunneling Method, which depend heavily on numerical stress analysis tools and the fact that the effects of excavation at the face of a tunnel are distinctively three–dimensional (3D), necessitates the use of 3D numerical analysis for these problems. Stress analysis of a practical mining problem can be very lengthy, and the processing time can be measured in days or weeks at times. A framework is developed to facilitate efficient modeling of underground excavations and to create an optimal 3D mesh by reducing the number of surface and volume elements while keeping the result of stress analysis accurate enough at the region of interest, where a solution is sought. Fewer surface and volume elements mean fewer degrees of freedom in the numerical model, which directly translates into savings in computational time and resources. The mesh refinement algorithm is driven by a set of criteria that are functions of distance and visibility of points from the region of interest, and the framework can be easily extended by adding new types of criteria. This paper defines the framework, whereas a second companion paper will investigate its efficiency, accuracy and application to a number of practical mining problems. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
65.
Modeling and migration couple is one of the most important steps in seismic data processing and interpretation. Absorbing boundary conditions used in the modeling were studied with the wave-equation by different authors. In this study, reflection coefficient analyses of recent solutions are compared to each other for the different incident angles of seismic waves to the modeling boundaries. According to the reflection coefficients correlation, the A3 condition is the most appropriate solution which greatly reduces artificial reflections from the boundaries. However, multi-transmitting Formula is better for relatively high angles between 32–58° with the usage of a special parameter. On the contrary, this formula is not an appropriate condition for angles lower than 32°, although it allows setting the boundary at any preferred angle. Considering that most of the boundaries are set in low angles, A3 solution is still most preferential condition. In this study, it is also aimed to find out the optimum grid intervals for minimizing the ill-posedness arose from the combination of the 45° finite difference migration equation and the B2 absorbing boundary condition for migration. Appropriate values are determined as ωΔx = 0.2 and ωΔz = 0.4 or neighbouring coarser values. It is also concluded that finer mesh spacing can increase the ill-posedness, in contrast to existence of some fine grid size values providing well-posedness. In addition, ill-posedness is obviously standard after ωΔx = 0.6 for all values of ωΔz.  相似文献   
66.
Recently, the origin of the solar cycle is considered to be rooted in the dynamics of the solar core (Grandpierre, 1996). The dynamic solar core model requires macroscopic flow and magnetic field as basic inputs. The macroscopic flow cannot be generated by the quasistatic solar structure and it has to reach a larger than critical size (Grandpierre, 1984) in order to survive dissipation. Therefore the flow must be generated by outer agents. The most significant outer agents to the Sun are the planets of the Solar System. These theoretical arguments are supported by observations showing that planetary tides follow a pattern correlating with the solar cycle in the last three and a half centuries (Wood, 1972; Desmoulins, 1995). Therefore the pulsating-ejecting solar core model gives a firm theoretical basis for the interpretation of these largely ignored observations. In this paper a new and simple calculation is presented which enlightens the planetary origin of the eleven-year period and gives a physical basis for a detailed modelling of the dynamo and the solar cycle.  相似文献   
67.
We critically comment upon the paper: The properties of large particles in the zodiacal cloud and in the interstellar medium, and their relation to recent IRAS observations, by F. Hoyle and N. C. Wickramasinghe, which appeared inAstrophysics and Space Science 107 (1984) 224.  相似文献   
68.
We have studied the lateral velocity variations along a partly buried inverted paleo–rift in Central Lapland, Northern Europe with a 2D wide-angle reflection and refraction experiment, HUKKA 2007. The experiment was designed to use seven chemical explosions from commercial and military sites as sources of seismic energy. The shots were recorded by 102 stations with an average spacing of 3.45 km. Two-dimensional crustal models of variations in P-wave velocity and Vp/Vs-ratio were calculated using the ray tracing forward modeling technique. The HUKKA 2007 experiment comprises a 455 km long profile that runs NNW–SSE parallel to the Kittilä Shear Zone, a major deformation zone hosting gold deposits in the area. The profile crosses Paleoproterozoic and reactivated Archean terranes of Central Lapland. The velocity model shows a significant difference in crustal velocity structure between the northern (distances 0–120 km) and southern parts of the profile. The difference in P-wave velocities and Vp/Vs ratio can be followed through the whole crust down to the Moho boundary indicating major tectonic boundaries. Upper crustal velocities seem to vary with the terranes/compositional differences mapped at the surface. The lower layer of the upper crust displays velocities of 6.0–6.1 km/s. Both Paleoproterozoic and Archean terranes are associated with high velocity bodies (6.30–6.35 km/s) at 100 and 200–350 km distances. The Central Lapland greenstone belt and Central Lapland Granitoid complex are associated with a 4 km-thick zone of unusually low velocities (<6.0 km/s) at distances between 120 and 220 km. We interpret the HUKKA 2007 profile to image an old, partly buried, inverted continental rift zone that has been closed and modified by younger tectonic events. It has structural features typical of rifts: inward dipping rift shoulders, undulating thickness of the middle crust, high velocity lower crust and a rather uniform crustal thickness of 48 km.  相似文献   
69.
It is noted that the empirically confirmed existence of the massiveW ± andZ 0 particles is in fact an indirect experimental evidence against the existence of tachyons.  相似文献   
70.
We report chemical and mineralogical data for one atmosphere melting experiments conducted on alkalic rocks from the Mt. Erebus volcanic region: DVDP2 basanite, two hawaiites (DVDP2 and a nepheline-bearing variety), and an anorthoclase phonolite. Temperatures between 1,224 and 1,049°C were investigated at fO2~QFM. DVDP2 basanite appears to be an intermediate pressure liquid or a cumulate, because only olivine coexists with melt from above 1,224–1,160°C. High-Ca pyroxene joins olivine in the crystallization sequence at 1,138°C. These minerals are joined by plagioclase at a temperature between 1,120 and 1,104°C. In contrast, DVDP2 hawaiite appears to be relatively evolved, because it is multiply saturated with olivine, plagioclase, and high-Ca pyroxene near its liquidus (between 1,120 and 1,104°C). Plagioclase crystallizes in the Ne-hawaiite by 1,160°C followed by olivine below 1,120°C. The liquidus of anorthoclase phonolite is between the lowest temperatures investigated, 1,089 and 1,049°C, and plagioclase is the liquidus mineral. Our results indicate that DVDP2 hawaiite can be derived from a DVDP2 basanitic parental magma by crystal fractionation at low pressures, that the nepheline hawaiite is an olivine cumulate, and that the liquids parental to the anorthoclase phonolite represent the end products of crystal fractionation. They also allow us to illustrate how the Ti-content of pyroxene may be used as a petrogenetic indicator of processes and events in the evolution of the Erebus volcanic system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号