首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   659篇
  免费   62篇
  国内免费   3篇
测绘学   23篇
大气科学   58篇
地球物理   244篇
地质学   239篇
海洋学   12篇
天文学   97篇
综合类   9篇
自然地理   42篇
  2024年   2篇
  2023年   3篇
  2022年   6篇
  2021年   10篇
  2020年   13篇
  2019年   12篇
  2018年   51篇
  2017年   43篇
  2016年   62篇
  2015年   46篇
  2014年   54篇
  2013年   59篇
  2012年   34篇
  2011年   30篇
  2010年   34篇
  2009年   27篇
  2008年   25篇
  2007年   28篇
  2006年   21篇
  2005年   14篇
  2004年   9篇
  2003年   12篇
  2002年   11篇
  2001年   8篇
  2000年   10篇
  1999年   7篇
  1998年   10篇
  1997年   3篇
  1996年   9篇
  1995年   9篇
  1994年   4篇
  1993年   6篇
  1991年   8篇
  1990年   2篇
  1989年   2篇
  1988年   2篇
  1986年   2篇
  1985年   3篇
  1984年   3篇
  1982年   2篇
  1981年   3篇
  1980年   3篇
  1979年   3篇
  1978年   3篇
  1974年   1篇
  1973年   3篇
  1971年   2篇
  1970年   2篇
  1969年   2篇
  1915年   1篇
排序方式: 共有724条查询结果,搜索用时 62 毫秒
101.
去年上半年,我院承担了连云港核电厂一期核岛、常规岛及海水取排水和人工边坡的工程地质勘察工作.由于是核电厂厂址勘察,业主及设计部门在外业勘察及内业资料处理上提出全部资料采用计算机处理,并提供成果报告的光盘或软盘.这意味着我们的全部成果资料应该是数字化的.  相似文献   
102.
The results of geophysical studies conducted with selected electrical and electromagnetic methods in the Kondratowa Valley in the Tatra Mountains (the Carpathian Mountains, Poland) are presented in the article. The surveys were performed with the following methods: electrical resistivity tomography (ERT), georadar (GPR) and conductivity meter (CM). The objective of the noninvasive geophysical measurements was to determine the thickness of the Quaternary postglacial sediments that fill the bottom of the valley and to designate the accumulation of boulders deposited on Quaternary sediments. The results of ERT surveys conducted along the axis of the valley allowed to determine the changeability of the thickness of the postglacial sediments and allowed to designate a few areas of occurrence of boulders. The ERT, GPR and CM surveys conducted across the valley allowed to designate with high accuracy the thickness of the accumulation of boulders sliding down the valley bottom from the couloirs surrounding the valley.  相似文献   
103.
Piping has been recognized as an important geomorphic, soil erosion and hydrologic process. It seems that it is far more widespread than it has often been supposed. However, our knowledge about piping dynamics and its quantification currently relies on a limited number of data for mainly loess‐derived areas and marl badlands. Therefore, this research aimed to recognize piping dynamics in mid‐altitude mountains under a temperate climate, where piping occurs in Cambisols, not previously considered as piping‐prone soils. It has been expressed by the estimation of erosion rates due to piping and elongation of pipes in the Bere?nica Wy?na catchment in the Bieszczady Mountains, eastern Carpathians (305 ha, 188 collapsed pipes). The research was based on the monitoring of selected piping systems (1971–1974, 2013–2016). Changes in soil loss vary significantly between different years (up to 27.36 t ha?1 yr?1), as well as between the mean short‐term erosion rate (up to 13.10 t ha?1 yr?1), and the long‐term (45 years) mean of 1.34 t ha?1 yr?1. The elongation of pipes also differs, from no changes to 36 m during one year. The mean total soil loss is 48.8 t ha?1 in plots, whereas in the whole studied catchment it is 2.0 t ha?1. Hence, piping is both spatially and temporally dependent. The magnitude of piping in the study area is at least three orders of magnitude higher than surface erosion rates (i.e. sheet and rill erosion) under similar land use (grasslands), and it is comparable to the magnitude of surface soil erosion on arable lands. It means that piping constitutes a significant environmental problem and, wherever it occurs, it is an important, or even the main, sediment source. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
104.
The article presents the spatial and temporal dynamics of water temperature in two reservoirs on the upper course of the Dunajec River in the Polish Carpathians. It aims at presenting how spatial patterns and time evolution of water temperature in the reservoirs affect the water temperature in the river. The analysis is based on the results of water temperature measurements in hydrometric verticals in two reservoirs as well as in the river upstream and downstream of the reservoirs. The measurements were carried out in 2012 and 2013, in hydrometeorological conditions typical for each season of the year. Based on the measurements, it has been demonstrated that the complex of reservoirs affects the water temperature in the river over the year and the existence of the smaller lower reservoir may attenuate the cooling or heating effect of the main reservoir on the river.  相似文献   
105.
Anabranching rivers evolve in various geomorphic settings and various river planforms are present within these multi‐channel systems. In some cases, anabranches develop meandering patterns. Such river courses existed in Europe prior to intensive hydro‐technical works carried out during the last 250 years. Proglacial stream valleys, inherited from the last glaciation, provided a suitable environment for the development of anabranching rivers (wide valleys floors with abundant sand deposits). The main objective of the present study is to reconstruct the formation of an anabranching river planform characterized by meandering anabranches. Based on geophysical and geological data obtained from field research and a reconstruction of palaeodischarges, a model of the evolution of an anabranching river formed in a sandy floodplain is proposed. It is demonstrated that such a river system evolves from a meandering to an anabranching planform in periods of high flows that contribute to the formation of crevasse splays. The splay channels evolve then into new meandering flow paths that form ‘second‐order’ crevasses, avulsions and cutoffs. The efficiency of the flow is maintained by the formation of cutoffs and avulsions preventing the development of high sinuosity channels, and redirecting the flow to newly formed channels during maximum flow events. A comparison with other anabranching systems revealed that increased discharges and sediment loads are capable of forming anabranching planforms both in dryland and temperate climate zones. The sediment type available for transport, often inherited from older sedimentary environments, is an important variable determining whether the channel planform is anabranching, with actively migrating channels, or anastomosing, with stable, straight or sinuous branches. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
106.
Soils in mountainous areas are often polygenetic, developed in slope covers that relate to glacial and periglacial activities of the Pleistocene and Holocene and reflect climatic variations. Landscape development during the Holocene may have been influenced by erosion/solifluction that often started after the Holocene climatic optimum. To trace back soil evolution and its timing, we applied a multi‐methodological approach. This approach helped us to outline scenario of soil transformation. According to our results, some aeolian input must have occurred in the late Pleistocene. During that time and the early Holocene, the soils most likely had features of Cryosols or Leptosols. Physico‐chemical and mineralogical analyses have indicated that the material was denudated (between late Boreal to the Atlantic) from the ridge and upper‐slope positions forming a colluvium at mid‐slope positions. Later, during the Sub‐Boreal, mass wasting of the remains of silt material deposited at the end of the Pleistocene age on the ridge top seems to have occurred. In addition, the cool and moist conditions caused the deposition of a colluvium at the lower‐slope positions. The next phase was characterized by the transformation of Leptosols/Cambisols into Podzols at upper‐slope or shoulder positions and to Albic Cambisols at mid‐slope positions. During the Sub‐Boreal period, Stagnosols started to form at the lower part of the slope catena. Overall, the highest erosion rates were calculated at the upper‐slope position and the lowest rates at mid‐slope sites. Berylium‐10 (10Be) data showed that the Bs, BC/C were covered during the Holocene by a colluvium with a different geological composition which complicated the calculation of erosion or accumulation rates. The interpretation of erosion and accumulation rates in such multi‐layered materials may, therefore, be hampered. However, the multi‐methodological reconstruction we applied shed light on the soil and landscape evolution of the eastern Karkonosze Mountains. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
107.
A value of 0.001 is recommended by the United States Environmental Protection Agency (USEPA) for its groundwater‐to‐indoor air Generic Attenuation Factor (GAFG), used in assessing potential vapor intrusion (VI) impacts to indoor air, given measured groundwater concentrations of volatile chemicals of concern (e.g., chlorinated solvents). The GAFG can, in turn, be used for developing groundwater screening levels for VI given target indoor air quality screening levels. In this study, we examine the validity and applicability of the GAFG both for predicting indoor air impacts and for determining groundwater screening levels. This is done using both analysis of published data and screening model calculations. Among the 774 total paired groundwater‐indoor air measurements in the USEPA's VI database (which were used by that agency to generate the GAFG) we found that there are 427 pairs for which a single groundwater measurement or interpolated value was applied to multiple buildings. In one case, up to 73 buildings were associated with a single interpolated groundwater value and in another case up to 15 buildings were associated with a single groundwater measurement (i.e., that the indoor air contaminant concentrations in all of the associated buildings were influenced by the concentration determined at a single point). In more than 70% of the cases (390 of 536 paired measurements in which horizontal building‐monitoring well distance was recorded) the monitoring wells were located more than 30 m (and one up to over 200 m) from the associated buildings. In a few cases, the measurements in the database even improbably implied that soil gas contaminant concentrations increased, rather than decreased, in an upward direction from a contaminant source to a foundation slab. Such observations indicate problematic source characterization within the data set used to generate the GAFG, and some indicate the possibility of a significant influence of a preferential contaminant pathway. While the inherent value of the USEPA database itself is not being questioned here, the above facts raise the very real possibility that the recommended groundwater attenuation factors are being influenced by variables or conditions that have not thus far been fully accounted for. In addition, the predicted groundwater attenuation factors often fall far beyond the upper limits of predictions from mathematical models of VI, ranging from screening models to detailed computational fluid dynamic models. All these models are based on the same fundamental conceptual site model, involving a vadose zone vapor transport pathway starting at an underlying uniform groundwater source and leading to the foundation of a building of concern. According to the analysis presented here, we believe that for scenarios for which such a “traditional” VI pathway is appropriate, 10?4 is a more appropriately conservative generic groundwater to indoor air attenuation factor than is the EPA‐recommended 10?3. This is based both on the statistical analysis of USEPA's VI database, as well as the traditional mathematical models of VI. This result has been validated by comparison with results from some well‐documented field studies.  相似文献   
108.
109.
110.
Municipal wastes collected in landfills are a significant source of air contamination and frequently characterize by elevated concentrations of different fungi. Posing a serious health threat to landfill workers and local residents, the fungal aerosol has to be monitored with respect to its quantity and quality. In this study, concentrations of airborne fungi, their particle size distribution, species composition and the presence of cytotoxic strains of Aspergillus fumigatus were assessed in different sites within the landfill area. The quantitative and qualitative changes in the fungal aerosol were determined with respect to a season and landfill activity level (i.e. exploitation or standstill periods). Within the landfill area, particular sites were grouped with regard to airborne fungi concentrations and similarities in species composition. The qualitative analysis indicated that 43 species were shared during both sampling times, and only nine species were characteristic for the standstill period. Among fungal isolates, 21 strains of A. fumigatus revealed cytotoxic activity expressed at different levels, depending on the fungal extract concentrations used in the MTT assay. The results suggested that exposure (especially in summer) to small airborne particles, containing distinct species, may occur not only in the active sector but also in close vicinity to the landfill. Hence, microbial monitoring of the landfill and surrounding area should be carried out taking into account both quantitative aspect supplemented by size distribution analysis and qualitative features, especially of those strains possessing cytotoxic activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号