首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   140篇
  免费   9篇
测绘学   1篇
大气科学   8篇
地球物理   67篇
地质学   37篇
海洋学   22篇
天文学   14篇
  2024年   1篇
  2021年   4篇
  2020年   2篇
  2019年   2篇
  2018年   4篇
  2017年   7篇
  2016年   4篇
  2015年   5篇
  2014年   3篇
  2013年   10篇
  2012年   7篇
  2011年   2篇
  2010年   6篇
  2009年   5篇
  2008年   5篇
  2007年   9篇
  2006年   4篇
  2005年   5篇
  2004年   3篇
  2003年   3篇
  2002年   3篇
  2000年   1篇
  1999年   1篇
  1998年   4篇
  1997年   3篇
  1996年   3篇
  1995年   6篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1990年   3篇
  1989年   2篇
  1987年   1篇
  1986年   4篇
  1985年   4篇
  1984年   1篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1980年   5篇
  1976年   2篇
  1975年   3篇
  1973年   1篇
排序方式: 共有149条查询结果,搜索用时 296 毫秒
11.
This paper seeks to orientate research on local food networks more firmly towards ideas of grassroots and social niche innovations. Drawing on recent conceptual ideas from strategic niche management, this paper provides an exploratory analysis of attempts to spread grassroots social innovations through the Big Lottery Local Food programme run by the Royal Society of Wildlife Trusts in England. This £ 59.8 million programme aims to distribute grants to a variety of food-related projects and to make locally grown food more accessible and affordable to local communities. Insights into 29 funded projects, of varying length and scale of operation, are provided through over 150 telephone and personal interviews. While the Local Food programme is undoubtedly about bringing small, often neglected pieces of land into production and increasing access to affordable food, results show that the programme is also very much seen as a vehicle for building community capacity through facilitating community cohesion, healthy eating, educational enhancement and integrating disadvantaged groups into mainstream society and economy. The paper concludes with some reflections on the extent to which the concept of grassroots social innovations, as a form of niche innovation, can help understand the ability of local food networks to develop the capacity of communities to respond to locally identified problems and to effect more widespread, sustainable change.  相似文献   
12.
Book review     
  相似文献   
13.
A variety of proposed activities to mitigate greenhouse gas emissions will impact on scarce water resources, which are coming under increasing pressure in many countries due to population growth and shifting weather patterns. However, the integrated analysis of water and carbon impacts has been given limited attention in greenhouse mitigation planning. In this Australian case study, we analyse a suite of 74 mitigation measures ranked as highest priority by one influential analysis, and we find that they have highly variable consequences for water quantity. We find: (1) The largest impacts result from land-based sequestration, which has the potential to intercept large quantities of water and reduce catchment yields, estimated to exceed 100 Mm3/MtCO2-e of carbon mitigated (100,000 l per tonne CO2-e). (2) Moderate impacts result from some renewable power options, including solar thermal power with a water cost estimated at nearly 4 Mm3/MtCO2-e. However, the water impacts of solar thermal power facilities could be reduced by designing them to use existing power-related water supplies or to use air or salt-water cooling. (3) Wind power, biogas, solar photovoltaics, energy efficiency and operational improvements to existing power sources can reduce water demand through offsetting the water used to cool thermal power generation, with minor savings estimated at 2 Mm3/MtCO2-e and amounting to nearly 100 Mm3 of water saved in Australia per annum in 2020. This integrated analysis significantly changes the attractiveness of some mitigation options, compared to the case where water impacts are not considered.  相似文献   
14.
Future scenarios of the energy system under greenhouse gas emission constraints depict dramatic growth in a range of energy technologies. Technological growth dynamics observed historically provide a useful comparator for these future trajectories. We find that historical time series data reveal a consistent relationship between how much a technology’s cumulative installed capacity grows, and how long this growth takes. This relationship between extent (how much) and duration (for how long) is consistent across both energy supply and end-use technologies, and both established and emerging technologies. We then develop and test an approach for using this historical relationship to assess technological trajectories in future scenarios. Our approach for “learning from the past” contributes to the assessment and verification of integrated assessment and energy-economic models used to generate quantitative scenarios. Using data on power generation technologies from two such models, we also find a consistent extent - duration relationship across both technologies and scenarios. This relationship describes future low carbon technological growth in the power sector which appears to be conservative relative to what has been evidenced historically. Specifically, future extents of capacity growth are comparatively low given the lengthy time duration of that growth. We treat this finding with caution due to the low number of data points. Yet it remains counter-intuitive given the extremely rapid growth rates of certain low carbon technologies under stringent emission constraints. We explore possible reasons for the apparent scenario conservatism, and find parametric or structural conservatism in the underlying models to be one possible explanation.  相似文献   
15.
Measurements and calculations in underwater and bio-acoustics should use for the units of the primary reference quantities the International System of Units commonly referred to as SI metric. Relative levels are important quantities provided the reference is clearly specified and the modifier to the term level is consistent with the units of the reference quantity. In particular it is necessary to distinguish between pressure, power, and energy references. These reference quantities should have clearly defined SI-metric (mks) units. The absolute value of the power or intensity should be parenthetically included  相似文献   
16.
The Karin cluster is one of the youngest known families of main-belt asteroids, dating back to a collisional event only 5.8±0.2 Myr ago. Using the Spitzer Space Telescope we have photometrically sampled the thermal continua (3.5-22 μm) of 17 Karin cluster asteroids of different sizes, down to the smallest members discovered so far, in order to make the first direct measurements of their sizes and albedos and study the physical properties of their surfaces. Our targets are also amongst the smallest main-belt asteroids observed to date in the mid-infrared. The derived diameters range from 17.3 km for 832 Karin to 1.5 km for 75176, with typical uncertainties of 10%. The mean albedo is pv=0.215±0.015, compared to 0.20±0.07 for 832 Karin itself (for H=11.2±0.3), consistent with the view that the Karin asteroids are closely related physically as well as dynamically. The albedo distribution (0.12?pv?0.32) is consistent with the range associated with S-type asteroids but the variation from one object to another appears to be significant. Contrary to the case for near-Earth asteroids, our data show no evidence of an albedo dependence on size. However, the mean albedo is lower than expected for young, fresh “S-type” surfaces, suggesting that space weathering can darken main-belt asteroid surfaces on very short timescales. Our data are also suggestive of a connection between surface roughness and albedo, which may reflect rejuvenation of weathered surfaces by impact gardening. While the available data allow only estimates of lower limits for thermal inertia, we find no evidence for the relatively high values of thermal inertia reported for some similarly sized near-Earth asteroids. Our results constitute the first observational confirmation of the legitimacy of assumptions made in recent modeling of the formation of the Karin cluster via a single catastrophic collision 5.8±0.2 Myr ago.  相似文献   
17.
Stable water isotopes δ18O and δ2H are used to investigate precipitation trends and storm dynamics to advance knowledge of precipitation patterns in a warming world. Herein, δ18O and δ2H were used to determine the relationship between extratropical cyclonic precipitation and local meteoric water lines (LMWLs) in the eastern Ohio Valley and the eastern United States. Precipitation volume weighted and unweighted central Ohio LMWLs, created with samples collected during 2012–2018, showed that temperature had the greatest effect on precipitation isotopic composition. HYSPLIT back trajectory modelling showed that precipitation was primarily derived from a mid-continental moisture source. Remnants of major hurricanes were collected as extratropical precipitation during the 2012–2018 sampling period in central Ohio. Extratropical precipitation samples were not significantly different from the samples that created the central Ohio LMWL. Six additional LMWLs were derived from United States Geological Survey (USGS) Atmospheric Integrated Research Monitoring Network (AIRMoN) samples collected in Pennsylvania, Delaware, Tennessee, Vermont, New Hampshire, and Oxford, Ohio. Meteoric water lines describing published samples from Superstorm Sandy, plotted with these AIRMoN LMWLs, showed isotopic composition of Superstorm Sandy precipitation was commonly more depleted than the average isotopic composition at the mid-latitude locations. Meteoric water lines describing the Superstorm Sandy precipitation were not significantly different in slope from LMWLs generated within 300 km of the USGS AIRMoN site. This finding, which was observed across the eastern Ohio Valley and eastern United States, demonstrated a consistent precipitation δ2H–δ18O relationship for extratropical cyclonic and non-cyclonic events. This work also facilitates the analysis of storm development based on the relationship between extratropical event signature and the LMWL. Analysis of extratropical precipitation in relation to LMWLs along storm tracks allows for stronger development of precipitation models and understanding of which climatic and atmospheric factors determine the isotopic composition of precipitation.  相似文献   
18.
The behaviour of subaerial particle-laden gravity currents (e.g. pyroclastic flows, lahars, debris flows, sediment-bearing floods and jökulhlaups) flowing into the sea has been simulated with analogue experiments. Flows of either saline solution, simple suspensions of silicon carbide (SiC) in water or complex suspensions of SiC and plastic particles in methanol were released down a slope into a tank of water. The excess momentum between subaerial and subaqueous flow is dissipated by a surface wave. At relatively low density contrasts between the tank water and the saline or simple suspensions, the flow mixture enters the water and forms a turbulent cloud involving extensive entrainment of water. The cloud then collapses gravitationally to form an underwater gravity current, which progresses along the tank floor. At higher density contrasts, the subaerial flow develops directly into a subaqueous flow. The flow slows and thickens in response to the reduced density contrast, which is driving motion, and then continues in the typical gravity current manner. Complex suspensions become dense flows along the tank floor or buoyant flows along the water surface, if the mixtures are sufficiently denser or lighter than water respectively. Flows of initially intermediate density are strongly influenced by the internal stratification of the subaerial flow. Material from the particulate-depleted upper sections of the subaerial flow becomes a buoyant gravity current along the water surface, whereas material from the particulate-enriched lower sections forms a dense flow along the tank floor. Sedimentation from the dense flow results in a reduction in bulk density until the mixture attains buoyancy, lifts off and becomes a secondary buoyant flow along the water surface. Jökulhlaups, lahars and debris flows are typically much denser than seawater and, thus, will usually form dense flows along the seabed. After sufficient sedimentation, the freshwater particulate mixture can lift off to form a buoyant flow at the sea surface, leading to a decoupling of the fine and coarse particles. Flood waters with low particulate concentrations (<2%) may form buoyant flows immediately upon entering the ocean. Subaerial pyroclastic flows develop a pronounced internal stratification during subaerial run-out and, thus, a flow-splitting behaviour is probable, which agrees with evidence for sea surface and underwater flows from historic eruptions of Krakatau and Mont Pelée. A pyroclastic flow with a bulk density closer to that of sea water may form a turbulent cloud, resulting in the deposition of much of the pyroclasts close to the shore. Dense subaqueous pyroclastic flows will eventually lift off and form secondary buoyant flows, either before or after the transformation to a water-supported nature.  相似文献   
19.
At-sea detection of derelict fishing gear in the North Pacific: an overview   总被引:1,自引:0,他引:1  
There are numerous known impacts of derelict fishing gear (DFG) to marine ecosystems and safe navigation around the world. To mitigate these impacts, the preemptive detection and removal of DFG at sea are being pursued. This special issue focuses on the North Pacific Ocean because of historic and ongoing research on DFG in the area, particularly as it relates to the Hawaiian Archipelago. In order to develop an effective detection strategy, information and expertise from three disciplines must be integrated: marine debris, oceanography, and remote sensing technology. Building upon results and discussions during a workshop held in December 2008, this special issue provides both results of original research and review papers, pursuing each discipline as it relates to DFG and outlining a multi-faceted strategy to effectively detect DFG at sea. This strategy serves as a roadmap, taking us closer to realizing the goal of detecting and removing DFG at sea.  相似文献   
20.
The precipitation/replacement of Ca‐phosphate is a complex process that commonly takes place during the early diagenesis in marine sediments. The unusual occurrence of shallow marine, early diagenetic phosphatic deposits associated with glassy tuffs in the Neogene Gaiman Formation, in the Chubut Province, Patagonia, Argentina, constitutes a good case example for the study of replacement and precipitation of Ca‐phosphate on an unstable substrate. Isocon diagrams illustrate that chemical changes during glass diagenesis include gains in loss on ignition and Ca, and losses of K. These changes are the result of glass hydration during sea water–glass interaction, together with adsorption and diffusion of ions into the bulk shard; combined, these represent an incipient process of volcanic glass replacement by Ca‐phosphate. Subsequent early diagenetic P enrichment in the pore solutions led to phosphate precipitation, associated with pitting on the glass shards and pumice. The associated development of a reactive surface promoted the incorporation of P and Ca into their margins. Lastly, precipitation of calcium phosphate filled the vesicles and other open cavities, inhibiting further glass dissolution. The high porosity and reactivity of the volcanic glass provided an appropriate substrate for phosphate precipitation, leading to the development of authigenic apatite concretions in the volcanic‐glass bearing strata of the Gaiman Formation. This research is of significance for those concerned with marine phosphatic deposits and sheds light on the processes of early diagenetic phosphate precipitation by replacement of an atypical, unstable substrate like hydrated volcanic glass.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号