首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
This paper systematically compares modeled rates of change provided by global integrated assessment models aiming for the 2 °C objective to historically observed rates of change. Such a comparison can provide insights into the difficulty of achieving such stringent climate stabilization scenarios. The analysis focuses specifically on the rates of change for technology expansion and diffusion, emissions and energy supply investments. The associated indicators vary in terms of system focus (technology-specific or energy system wide), temporal scale (timescale or lifetime), spatial scale (regional or global) and normalization (accounting for entire system growth or not). Although none of the indicators provide conclusive insights as to the achievability of scenarios, this study finds that indicators that look into absolute change remain within the range of historical growth frontiers for the next decade, but increase to unprecedented levels before mid-century. Indicators that take into account or normalize for overall system growth find future change to be broadly within historical ranges. This is particularly the case for monetary-based normalization metrics like GDP compared to energy-based normalization metrics like primary energy. By applying a diverse set of indicators alternative, complementary insights into how scenarios compare with historical observations are acquired but they do not provide further insights on the possibility of achieving rates of change that are beyond current day practice.  相似文献   

2.
Emissions of air pollutants such as sulfur and nitrogen oxides and particulates have significant health impacts as well as effects on natural and anthropogenic ecosystems. These same emissions also can change atmospheric chemistry and the planetary energy balance, thereby impacting global and regional climate. Long-term scenarios for air pollutant emissions are needed as inputs to global climate and chemistry models, and for analysis linking air pollutant impacts across sectors. In this paper we present methodology and results for air pollutant emissions in Shared Socioeconomic Pathways (SSP) scenarios. We first present a set of three air pollution narratives that describe high, central, and low pollution control ambitions over the 21st century. These narratives are then translated into quantitative guidance for use in integrated assessment models. The resulting pollutant emission trajectories under the SSP scenarios cover a wider range than the scenarios used in previous international climate model comparisons. In the SSP3 and SSP4 scenarios, where economic, institutional and technological limitations slow air quality improvements, global pollutant emissions over the 21st century can be comparable to current levels. Pollutant emissions in the SSP1 scenarios fall to low levels due to the assumption of technological advances and successful global action to control emissions.  相似文献   

3.
Drastic reductions of greenhouse-gas (GHG) emissions are required to meet the goal of the 2015 Paris climate accord to limit global warming to 1.5–2.0 °C over pre-industrial levels. We introduce the material stock-flow framework as a novel way to develop scenarios for future GHG emissions using methods from social metabolism research. The basic assumption behind our exploratory scenario approach is that nearly all final energy is required to either expand and maintain stocks of buildings, infrastructures and machinery or to provide services by using them. Distinguishing three country groups, we develop GDP- and population-driven scenarios for the development of these material stocks and the corresponding energy requirements based on historically calibrated model parameters. We analyze the results assuming different future pathways of CO2 emissions per unit of primary energy. The resulting cumulative carbon emissions from 2018 to 2050 range from 361 Gt C in the lower GDP-driven to 568 GtC in the higher population-driven scenario. The findings from the population-driven scenarios point towards the huge implications of a hypothetical convergence of per-capita levels of material stocks assuming current trajectories of technological improvements. Results indicate that providing essential services with a considerably lower level of material stocks could contribute to large reductions in global resource demand and GHG emissions. A comparison of different stock levels in 2050 demonstrates that complying with ambitious climate targets requires much faster declines of CO2 emissions per unit of primary energy if growth of material stocks is not limited.  相似文献   

4.
Long-term emissions scenarios have served as the primary basis for assessing future climate change and response strategies. Therefore, it is important to regularly reassess the relevance of emissions scenarios in light of changing global circumstances and compare them with long-term developments to determine if they are still plausible, considering the newest insights. Four scenario series, SA90, IS92, SRES, and RCP/SSP, were central in the scenario-based literature informing the five Assessment Reports of the Intergovernmental Panel on Climate Change (IPCC) and the sixth assessment cycle. Here we analyze the historical trends of carbon dioxide (CO2) emissions from fossil fuel combustion and industry and emissions drivers between 1960 and 2017. We then compare the emission scenario series with historical trends for the period 1990–2017/2018. The results show that historical trends are quite consistent with medium scenarios in each series. As a result, they can be regarded as valid inputs for past and future analyses of climate change and impacts. Global CO2 emissions 1960–2018 (and 1990–2018) comprised six (and three) overall subperiods of emissions growth significantly higher and lower than average. Historically, CO2 emissions (in absolute numbers and growth rate) are tightly coupled with primary energy and indirectly with GDP. Global emissions generally followed a medium-high pathway, captured by “middle-of-the-road” scenario narratives in the earlier series, and by combinations of “global-sustainability” and “middle-of-the-road” narratives in the most recent series (SRES and SSP-baselines). Historical non-OECD trends were best captured by “rapid-growth” and “regional-competition” scenarios, while OECD trends were close to regional-sustainability and global-sustainability scenarios. Areas where the emissions scenarios captured the historical trends less well, are renewable and nuclear primary energy supply. The fact that the actual historical development is consistent with rapid-growth narratives in the non-OECD regions might have important implications for future greenhouse gas emissions and associated climatic change.  相似文献   

5.
Today’s climate policies will shape the future trajectory of emissions. Consumption is the main driver behind recent increases in global greenhouse gas emissions, outpacing savings through improved technologies, and therefore its representation in the evidence base will impact on the success of policy interventions. The IPCC’s Special Report on Global Warming of 1.5 °C (SR1.5) summarises global evidence on pathways for meeting below-2 °C targets, underpinned by a suite of scenarios from integrated assessment models (IAMs). We explore how final energy demand is framed within these, with the aim to making demand-related assumptions more transparent, and evaluating their significance, feasibility, and use or underutilisation as a mitigation lever. We investigate how the integrated assessment models compensate for higher and lower levels of final energy demand across scenarios, and how this varies when mitigating for 2 °C and 1.5 °C temperature targets through an analysis of (1) final energy demand projections, (2) energy-economy relationships and (3) differences between energy system decarbonisation and carbon dioxide removal in the highest and lowest energy demand pathways. We look across the full suite of mitigation pathways and assess the consequences of achieving different global carbon budgets. We find that energy demand in 2100 in the highest energy demand scenarios is approximately three to four times higher than the lowest demand pathways, but we do not find strong evidence that 1.5 °C-consistent pathways cluster on the lower end of demand levels, particularly when they allow for overshoot. The majority of demand reductions happen pre-2040, which assumes absolute decoupling from economic growth in the near-term; thereafter final energy demand levels generally grow to 2100. Lower energy demand pathways moderately result in lower renewable energy supply and lower energy system investment, but do not necessarily reduce reliance on carbon dioxide removal. In this sense, there is more scope for IAMs to implement energy demand reduction as a longer-term mitigation lever and to reduce reliance on negative emissions technologies. We demonstrate the need for integrated assessments to play closer attention to how final energy demand interacts with, relates to, and can potentially offset supply-side characteristics, alongside a more diverse evidence base.  相似文献   

6.
The importance of sulfur dioxide emissions for climate change is now established, although substantial uncertainties remain. This paper presents projections for future sulfur dioxide emissions using the MiniCAM integrated assessment model. A new income-based parameterization for future sulfur dioxide emissions controls is developed based on purchasing power parity (PPP) income estimates and historical trends related to the implementation of sulfur emissions limitations. This parameterization is then used to produce sulfur dioxide emissions trajectories for the set of scenarios developed for the Special Report on Emission Scenarios (SRES). We use the SRES methodology to produce harmonized SRES scenarios using the latest version of the MiniCAM model. The implications, and requirements, for integrated assessment modeling of sulfur dioxide emissions are discussed. We find that sulfur emissions eventually decline over the next century under a wide set of assumptions. These emission reductions result from a combination of emission controls, the adoption of advanced electric technologies, and a shift away from the direct end use of coal with increasing income levels. Only under a scenario where incomes in developing regions increase slowly do global emission levels remain at close to present levels over the next century. Under a climate policy that limits emissions of carbon dioxide, sulfur dioxide emissions fall in a relatively narrow range. In most cases, the relative climatic effect of sulfur dioxide emissions decreases dramatically to a point where sulfur dioxide is only a minor component of climate forcing by the end of the century. Ecological effects of sulfur dioxide, however, could be significant in some developing regions for many decades to come.  相似文献   

7.
Abstract

This article investigates future greenhouse gas emission scenarios for Russia's electricity sector, a topic of importance since Russia's ratification of the Kyoto Protocol in November 2004. Eleven scenarios are constructed to the year 2020 considering economic and technological details in both the demand and supply sides of the sector. The scenarios are based upon a thorough review of the different factors controlling carbon dioxide emissions, including potential economic growth, changes in energy efficiency and technological development, and that Russia may export large amounts of natural gas to European and Asian markets. The most likely scenario is that Russia will double industrial output over the next 10 years, increase energy efficiency in the demand sector, will remain consistent to the goals of the Energy Strategy 2020 and will implement more efficient technology in the electricity supply sector. Consequently, carbon dioxide emissions will still be 102 million tonnes below 1990 levels in 2010, representing a significant source for emission reduction credits available to be sold on international markets or transferred to the next crediting period.  相似文献   

8.
We propose an approach for screening future infrastructure and demand management investments for large water supply systems subject to uncertain future conditions. The approach is demonstrated using the London water supply system. Promising portfolios of interventions (e.g., new supplies, water conservation schemes, etc.) that meet London’s estimated water supply demands in 2035 are shown to face significant trade-offs between financial, engineering and environmental measures of performance. Robust portfolios are identified by contrasting the multi-objective results attained for (1) historically observed baseline conditions versus (2) future global change scenarios. An ensemble of global change scenarios is computed using climate change impacted hydrological flows, plausible water demands, environmentally motivated abstraction reductions, and future energy prices. The proposed multi-scenario trade-off analysis screens for robust investments that provide benefits over a wide range of futures, including those with little change. Our results suggest that 60 percent of intervention portfolios identified as Pareto optimal under historical conditions would fail under future scenarios considered relevant by stakeholders. Those that are able to maintain good performance under historical conditions can no longer be considered to perform optimally under future scenarios. The individual investment options differ significantly in their ability to cope with varying conditions. Visualizing the individual infrastructure and demand management interventions implemented in the Pareto optimal portfolios in multi-dimensional space aids the exploration of how the interventions affect the robustness and performance of the system.  相似文献   

9.
This study surveys the most recent projections of future climate change provided by 20 Atmospheric-Ocean General Circulation Models (AOGCMs) participating in the Coupled Model Intercomparison Project 3 (CMIP3) with focus on the Italian region and in particular on the Italian Greater Alpine Region (GAR). We analyze historical and future simulations of monthly-mean surface air temperature (T) and total precipitation (P). We first compare simulated T and P from the AOGCMs with observations over Italy for the period 1951–2000, using bias indices as a metric for estimating the performance of each model. Using these bias indices and different ensemble averaging methods, we construct ensemble mean projections of future climate change over these regions under three different IPCC emission scenarios (A2, A1B, and B1). We find that the emissions pathway chosen has a greater impact on future simulated climate than the criteria used to obtain the ensemble means. Across all averaging methods and emission scenarios, the models project annual mean increase in T of 2–4°C over the period 1990–2100, with more pronounced increases in summer and warming of similar magnitude at high and low elevations areas (according to a threshold of 400 m). The models project decreases in annual-mean P over this same time period both over the Italian and GAR regions. This decrease is more pronounced over Italy, since a small increase in precipitation over the GAR is projected in the winter season.  相似文献   

10.
There is a large body of research and development into the low emission energy technologies that has the potential to assist developed and developing countries transition to more sustainable energy systems. It has long been recognised that public perceptions can have a fundamental effect on the market for technology and this issue raises questions about the role society will play in developing a low emissions energy future. Understanding how the public will respond to the range of low emission energy technologies as part of a climate change mitigation package is therefore critical for researchers, policy makers and industry stakeholders. In the current research, we investigated the Australian public’s likely acceptance of a range of low emission energy technologies by assessing the diverse ‘orientations’ that have emerged in response to low emission energy technologies. In a survey of two Australian states we measured the support for, and knowledge of, a range of low emission energy technologies. Using self-organising maps, a relatively new approach for segmenting response profiles, we identified that at least four distinct ‘orientations’ have emerged toward the issue and are characterising the likely acceptance of these technologies: ‘Disengaged’, ‘Nuclear Oriented’, ‘Renewables Oriented’, and ‘Engaged’. The implications of these multiple public viewpoints are described for climate change mitigation policy and for future research into the social acceptance of alternative energy technologies.  相似文献   

11.
The greenhouse gas emissions scenarios published by the IPCC in the Special Report on Emission Scenarios (SRES) continue to serve as a primary basis for assessing future climate change and possible response strategies. These scenarios were developed between 1996 and 1999 and sufficient time has now passed to make it worth examining their consistency with more recent data and projections. The comparison performed in this paper includes population, GDP, energy use, and emissions of CO2, non-CO2 gases and sulfur. We find the SRES scenarios to be largely consistent with historical data for the 1990–2000 period and with recent projections. Exceptions to this general observation include (1) in the long-term, relatively high population growth assumptions; in some regions, particularly in the A2 scenario; (2) in the medium-term, relatively high economic growth assumptions in the LAM (Latin America, Africa and Middle East) region in the A1 scenario; (3) in the short-term, CO2 emissions projections in A1 that are somewhat higher than the range of current scenarios; and (4) substantially higher sulfur emissions in some scenarios than in historical data and recent projections. In conclusion, given the relatively small inconsistencies for use as global scenarios there seems to be no immediate need for a large-scale IPCC-led update of the SRES scenarios that is solely based on the SRES scenario performance vis-a-vis data for the 1990–2000 period and/or more recent projections. Based on reported findings, individual research teams could make, and in some cases already have made, useful updates of the scenarios.  相似文献   

12.
This study assesses the effects of deep electricity decarbonisation and shifts in the choice of power plant cooling technologies on global electricity water demand, using a suite of five integrated assessment models. We find that electricity sector decarbonisation results in co-benefits for water resources primarily due to the phase-out of water-intensive coal-based thermoelectric power generation, although these co-benefits vary substantially across decarbonisation scenarios. Wind and solar photovoltaic power represent a win-win option for both climate and water resources, but further expansion of nuclear or fossil- and biomass-fuelled power plants with carbon capture and storage may result in increased pressures on the water environment. Further to these results, the paper provides insights on the most crucial factors of uncertainty with regards to future estimates of water demand. These estimates varied substantially across models in scenarios where the effects of decarbonisation on the electricity mix were less clear-cut. Future thermal and water efficiency improvements of power generation technologies and demand-side energy efficiency improvements were also identified to be important factors of uncertainty. We conclude that in order to ensure positive effects of decarbonisation on water resources, climate policy should be combined with technology-specific energy and/or water policies.  相似文献   

13.

The expected growth in the demand for passenger and freight services exacerbates the challenges of reducing transport GHG emissions, especially as commercial low-carbon alternatives to petroleum fuels are limited for shipping, air and long-distance road travel. Biofuels can offer a pathway to significantly reduce emissions from these sectors, as they can easily substitute for conventional liquid fuels in internal combustion engines. In this paper, we assess the potential of bioenergy to reduce transport GHG emissions through an analysis leveraging various integrated assessment models and scenarios, as part of the 33rd Energy Modeling Forum study (EMF-33). We find that bioenergy can contribute a significant, albeit not dominant, proportion of energy supply to the future transport sector: in scenarios aiming to keep the temperature increase below 2 °C by the end of the twenty-first century, models project that in 2100 bioenergy can provide on average 42 EJ/yr (ranging from 5 to 85 EJ/yr) for transport (compared to 3.7 EJ in 2018), mainly through lignocellulosic fuels. This makes up 9–62% of final transport energy use. Only a small amount of bioenergy is projected to be used in transport through electricity and hydrogen pathways, with a larger role for biofuels in road passenger transport than in freight. The association of carbon capture and storage (CCS) with bioenergy technologies (BECCS) is a key determinant in the role of biofuels in transport, because of the competition for biomass feedstock to provide other final energy carriers along with carbon removal. Among models that consider CCS in the biofuel conversion process the average market share of biofuels is 21% in 2100 (ranging from 2 to 44%), compared to 10% (0–30%) for models that do not. Cumulative direct emissions from the transport sector account for half of the emission budget (from 306 to 776 out of 1,000 GtCO2). However, the carbon intensity of transport decreases as much as other energy sectors in 2100 when accounting for process emissions, including carbon removal from BECCS. Lignocellulosic fuels become more attractive for transport decarbonization if BECCS is not feasible for any energy sectors. Since global transport service demand increases and biomass supply is limited, its allocation to and within the transport sector is uncertain and sensitive to assumptions about political as well as technological and socioeconomic factors.

  相似文献   

14.
中国2050年的能源需求与CO2排放情景   总被引:2,自引:0,他引:2  
利用国家发展和改革委员会能源研究所能源环境综合政策评价模型(IPAC模型),对中国未来中长期的能源需求与CO2排放情景进行了分析,对该情景的主要参数和结果进行了介绍,并对模型中的政策评价进行了介绍。同时报告了实现减排所需的技术。结果显示:未来中国经济将快速增长,能源需求和相应的CO2排放也将明显快速增加,与2005年相比,2030年能源需求可能增加1.4倍,2050年可能增加1.9倍。但中国也有较大的机会在2020年之后将能源需求量的增加幅度明显减小,将CO2排放控制住,使之不再出现明显增长,甚至有可能在2030年之后下降。  相似文献   

15.
中国2050年的能源需求与CO2排放情景   总被引:6,自引:1,他引:5  
 利用国家发展和改革委员会能源研究所能源环境综合政策评价模型(IPAC模型),对中国未来中长期的能源需求与CO2排放情景进行了分析,对该情景的主要参数和结果进行了介绍,并对模型中的政策评价进行了介绍。同时报告了实现减排所需的技术。结果显示:未来中国经济将快速增长,能源需求和相应的CO2排放也将明显快速增加,与2005年相比,2030年能源需求可能增加1.4倍,2050年可能增加1.9倍。但中国也有较大的机会在2020年之后将能源需求量的增加幅度明显减小,将CO2排放控制住,使之不再出现明显增长,甚至有可能在2030年之后下降。  相似文献   

16.
Economically consistent long-term scenarios for air pollutant emissions   总被引:1,自引:0,他引:1  
Pollutant emissions such as aerosols and tropospheric ozone precursors substantially influence climate. While future century-scale scenarios for these emissions have become more realistic through the inclusion of emission controls, they still potentially lack consistency between surface pollutant concentrations and regional levels of affluence. We find that the default method of scenario construction, whereby emissions factors converge to similar values in different regions, does not yield pollution concentrations consistent with historical experience. We demonstrate a methodology combining use of an integrated assessment model and a three-dimensional atmospheric chemical transport model, whereby a reference scenario is constructed by requiring consistent surface pollutant concentrations as a function of regional income over the 21st century. By adjusting air pollutant emission control parameters, we improve consistency between projected PM2.5 and economic income among world regions through time; consistency for ozone is also improved but is more difficult to achieve because of the strong influence of upwind world regions. Reference case pollutant emissions described here were used to construct the RCP4.5 Representative Concentration Pathway climate policy scenario.  相似文献   

17.
We assess the future of coal under alternative climate stabilization regimes, investigating how the quantity and location of future coal production, trade and use depends upon five factors: the supply-side constraint of resource depletion, diversification and deepening of international trade, economic growth, trends in energy intensity, and the availability of coal-fired carbon-free electric generation technology (IGCC-CCS). Using the Phoenix computable general equilibrium model of the world economy, we find that coal is sensitive to demand-side assumptions about economic growth and energy-saving structural or technological change. In a 550 ppm stabilization emission tax scenario, the gobal coal industry initially declines sharply and then rebounds, in 2050 reaching roughly the same size as it is today—but only if IGCC-CCS is available by 2020. Under alternative stabilization regimes, IGCC-CCS penetration is a key influence on production and imports in major coal regions, where it interacts with extraction costs driven by the rate of depletion relative to trade partners.  相似文献   

18.
The United Nations Framework Convention on Climate Change (UNFCCC 1992) calls for stabilization of atmospheric greenhouse gas (GHG) concentrations at a level that would prevent dangerous anthropogenic interference with the climate system. We use three global energy system models to investigate the technological and economic attainability of meeting CO2 concentration targets below current levels. Our scenario studies reveal that while energy portfolios from a broad range of energy technologies are needed to attain low concentrations, negative emission technologies—e.g., biomass energy with carbon capture and storage (BECCS)—significantly enhances the possibility to meet low concentration targets (at around 350 ppm CO2).  相似文献   

19.
In this study a scenario model is used to examine if foreseen technological developments are capable of reducing CO2 emissions in 2050 to a level consistent with United Nations Framework Convention on Climate Change (UNFCCC) agreements, which aim at maximizing the temperature rise to 2 °C compared to pre-industrial levels. The model is based on a detailed global environmentally extended supply–use table (EE SUT) for the year 2000, called EXIOBASE. This global EE SUT allows calculating how the final demand in each region drives activities in production sectors, and hence related CO2 emissions, in each region. Using this SUT framework, three scenarios have been constructed for the year 2050. The first is a business-as-usual scenario (BAU), which takes into account population, economic growth, and efficiency improvements. The second is a techno-scenario (TS), adding feasible and probable climate mitigation technologies to the BAU scenario. The third is the towards-2-degrees scenario (2DS), with a demand shift or growth reduction scenario added to the TS to create a 2 °C scenario. The emission results of the three scenarios are roughly in line with outcomes of typical scenarios from integrated assessment models. Our approach indicates that the 2 °C target seems difficult to reach with advanced CO2 emission reduction technologies alone.

Policy relevance

The overall outlook in this scenario study is not optimistic. We show that CO2 emissions from steel and cement production and air and sea transport will become dominant in 2050. They are difficult to reduce further. Using biofuels in air and sea transport will probably be problematic due to the fact that agricultural production largely will be needed to feed a rising global population and biofuel use for electricity production grows substantially in 2050. It seems that a more pervasive pressure towards emission reduction is required, also influencing the basic fabric of society in terms of types and volumes of energy use, materials use, and transport. Reducing envisaged growth levels, hence reducing global gross domestic product (GDP) per capita, might be one final contribution needed for moving to the 2 °C target, but is not on political agendas now.  相似文献   


20.
There is a deep disconnect between scientific and public concern about climate change. One reason is that global climate change is a fairly abstract concept with little perceived relevance, so a key challenge is to translate climate-change projections into locally concrete examples of potential impacts. Here we use climate analog analyses as an alternative method for identifying and communicating climate-change impacts. Our analysis uses multiple downscaled general circulation models for the state of Wisconsin, at 0.1 decimal degree resolution, and identifies contemporary locations in North America that are the most similar to the projected future climates for Wisconsin. We assess the uncertainties inherent in climate-change projections among greenhouse gas emission scenarios, time windows (mid-21st century vs. late 21st-century) and different combinations of climate variables. For all future scenarios and simulations, contemporary climatic analogs within North America were found for Wisconsin’s future climate. Closest analogs are primarily 200–500 km to the south-southwest of their Wisconsin reference location. Temperature has the largest effect on choice of climatic analog, but precipitation is the greatest source of uncertainty. Under the higher-end emission scenarios, the contemporary climatic analogs for Wisconsin’s end-21st-century climates are almost entirely outside the state. Climate-analog analyses offer a place-based means of assessing climate impacts that is complementary to the species-based approaches of species distributional models, and carries no assumptions about the characterization and conservatism of species niches. The analog method is simple and flexible, and can be readily extended to other regions and other environmental variables.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号