首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Various climate protocol proposals oblige different industrialized countries to reduce CO2 and other greenhouse gas emissions. In principle, the total costs of these obligations could be substantially reduced if emission reductions are implemented in regions with low marginal costs for CO2 reduction. This has been difficult to quantify because of lack of models with suitable regional and sectoral detail. In this paper we perform these calculations by taking advantage of the capability of the IMAGE 2 model to compute regional emissions and costs. Two main options are examined for allocating emission reductions required of industrialized regions in a cost effective manner: (1) allocating them among industrialized regions (2) allocating them among all world regions. The cost savings for each of these options are presented. The main conclusions are that (a) it is of great importance for the cost comparisons of protocols to use a well defined baseline scenario and clearly formulated targets, and (b) large economic benefits, in the order of 35–65%, can accrue from joint-implementation agreements which allocate investments on the basis of net marginal costs of CO2 emission reduction.  相似文献   

2.
Climate change modulates surface concentrations of fine particulate matter (PM2.5) and ozone (O3), indirectly affecting premature mortality attributed to air pollution. We estimate the change in global premature mortality and years of life lost (YLL) associated with changes in surface O3 and PM2.5 over the 21st century as a result of climate change. We use a global coupled chemistry-climate model to simulate current and future climate and the effect of changing climate on air quality. Epidemiological concentration-response relationships are applied to estimate resulting changes in premature mortality and YLL. The effect of climate change on air quality is isolated by holding emissions of air pollutants constant while allowing climate to evolve over the 21st century according to a moderate projection of greenhouse gas emissions (A1B scenario). Resulting changes in 21st century climate alone lead to an increase in simulated PM2.5 concentrations globally, and to higher (lower) O3 concentrations over populated (remote) regions. Global annual premature mortality associated with chronic exposure to PM2.5 increases by approximately 100 thousand deaths (95 % confidence interval, CI, of 66–130 thousand) with corresponding YLL increasing by nearly 900 thousand (95 % CI, 576–1,128 thousand) years. The annual premature mortality due to respiratory disease associated with chronic O3 exposure increases by +6,300 deaths (95 % CI, 1,600–10,400). This climate penalty indicates that stronger emission controls will be needed in the future to meet current air quality standards and to avoid higher health risks associated with climate change induced worsening of air quality over populated regions.  相似文献   

3.
A coupled chemical/dynamical model (SOCOL-SOlar Climate Ozone Links) is applied to study the impacts of future enhanced CO and NOx emissions over eastern China on regional chemistry and climate. The result shows that the increase of CO and NOx emissions has significant effects on regional chemistry, including NOx, CO, O3, and OH concentrations. During winter, the CO concentration is uniformly increased in the northern hemisphere by about 10 ppbv. During summer, the increase of CO has a regional distribution. The change in O3, concentrations near eastern China has both strong seasonal and spatial variations. During winter, the surface O3, concentrations decrease by about 2 ppbv, while during summer they increase by about 2 ppbv in eastern China. The changes of CO, NOx, and O3, induce important impacts on OH concentrations. The changes in chemistry, especially O3, induce important effects on regional climate. The analysis suggests that during winter, the surface temperature decreases and air pressure increases in central-eastern China. The changes of temperature and pressure produce decreases in vertical velocity. We should mention that the model resolution is coarse, and the calculated concentrations are generally underestimated when they are compared to measured results. However, because this model is a coupled dynamical/chemical model, it can provide some useful insights regarding the climate impacts due to changes in air pollutant emissions.  相似文献   

4.
The legacy of historical and the long-term impacts of 21st century greenhouse gas emissions on climate, ocean acidification, and carbon-climate feedbacks are investigated with a coupled carbon cycle-climate model. Emission commitment scenarios with zero emissions after year 2100 and 21st century emissions of 1,800, 900, and 0 gigatons of carbon are run up to year 2500. The reversibility and irreversibility of impacts is quantified by comparing anthropogenically-forced regional changes with internal, unforced climate variability. We show that the influence of historical emissions and of non-CO2 agents is largely reversible on the regional scale. Forced changes in surface temperature and precipitation become smaller than internal variability for most land and ocean grid cells in the absence of future carbon emissions. In contrast, continued carbon emissions over the 21st century cause irreversible climate change on centennial to millennial timescales in most regions and impacts related to ocean acidification and sea level rise continue to aggravate for centuries even if emissions are stopped in year 2100. Undersaturation of the Arctic surface ocean with respect to aragonite, a mineral form of calcium carbonate secreted by marine organisms, is imminent and remains widespread. The volume of supersaturated water providing habitat to calcifying organisms is reduced from preindustrial 40 to 25% in 2100 and to 10% in 2300 for the high emission case. We conclude that emission trading schemes, related to the Kyoto Process, should not permit trading between emissions of relatively short-lived agents and CO2 given the irreversible impacts of anthropogenic carbon emissions.  相似文献   

5.
Methane emissions contribute to global baseline surface ozone concentrations; therefore reducing methane to address climate change has significant co-benefits for air quality and human health. We analyze the costs of reducing methane from 2005 to 2030, as might be motivated to reduce climate forcing, and the resulting benefits from lower surface ozone to 2060. We construct three plausible scenarios of methane emission reductions, relative to a base scenario, ranging from 75 to 180 Mton CH4 yr?1 decreased in 2030. Using compilations of the global availability of methane emission reductions, the least aggressive scenario (A) does not incur any positive marginal costs to 2030, while the most aggressive (C) requires discovery of new methane abatement technologies. The present value of implementation costs for Scenario B are nearly equal to Scenario A, as it implements cost-saving options more quickly, even though it adopts positive cost measures. We estimate the avoided premature human mortalities due to surface ozone decreases by combining transient full-chemistry simulations of these scenarios in a global atmospheric chemical transport model, with concentration-mortality relationships from a short-term epidemiologic study and projected global population. An estimated 38,000 premature mortalities are avoided globally in 2030 under Scenario B. As benefits of methane reduction are positive but costs are negative for Scenario A, it is justified regardless of how avoided mortalities are valued. The incremental benefits of Scenario B also far outweigh the incremental costs. Scenario C has incremental costs that roughly equal benefits, only when technological learning is assumed. Benefits within industrialized nations alone also exceed costs in Scenarios A and B, assuming that the lowest-cost emission reductions, including those in developing nations, are implemented. Monetized co-benefits of methane mitigation for human health are estimated to be $13–17 per ton CO2eq, with a wider range possible under alternative assumptions. Methane mitigation can be a cost-effective means of long-term and international air quality management, with concurrent benefits for climate.  相似文献   

6.
Climate change, ambient ozone, and health in 50 US cities   总被引:2,自引:1,他引:2  
We investigated how climate change could affect ambient ozone concentrations and the subsequent human health impacts. Hourly concentrations were estimated for 50 eastern US cities for five representative summers each in the 1990s and 2050s, reflecting current and projected future climates, respectively. Estimates of future concentrations were based on the IPCC A2 scenario using global climate, regional climate, and regional air quality models. This work does not explore the effects of future changes in anthropogenic emissions, but isolates the impact of altered climate on ozone and health. The cities’ ozone levels are estimated to increase under predicted future climatic conditions, with the largest increases in cities with present-day high pollution. On average across the 50 cities, the summertime daily 1-h maximum increased 4.8 ppb, with the largest increase at 9.6 ppb. The average number of days/summer exceeding the 8-h regulatory standard increased 68%. Elevated ozone levels correspond to approximately a 0.11% to 0.27% increase in daily total mortality. While actual future ozone concentrations depend on climate and other influences such as changes in emissions of anthropogenic precursors, the results presented here indicate that with other factors constant, climate change could detrimentally affect air quality and thereby harm human health.  相似文献   

7.
Today's climate policy is based on the assumption that the location of emissions reductions has no impact on the overall climate effect. However, this may not be the case since reductions of greenhouse gases generally will lead to changes in emissions of short-lived gases and aerosols. Abatement measures may be primarily targeted at reducing CO2, but may also simultaneously reduce emissions of NOx, CO, CH4 and SO2 and aerosols. Emissions of these species may cause significant additional radiative forcing. We have used a global 3-D chemical transport model and a radiative transfer model to study the impact on climate in terms of radiative forcing for a realistic change in location of the emissions from large-scale sources. Based on an assumed 10% reduction in CO2 emissions, reductions in the emissions of other species have been estimated. Climate impact for the SRES A1B scenario is compared to two reduction cases, with the main focus on a case with emission reductions between 2010 and 2030, but also a case with sustained emission reductions. The emission reductions are applied to four different regions (Europe, China, South Asia, and South America). In terms of integrated radiative forcing (over 100 yr), the total effect (including only the direct effect of aerosols) is always smaller than for CO2 alone. Large variations between the regions are found (53–86% of the CO2 effect). Inclusion of the indirect effects of sulphate aerosols reduces the net effect of measures towards zero. The global temperature responses, calculated with a simple energy balance model, show an initial additional warming of different magnitude between the regions followed by a more uniform reduction in the warming later. A major part of the regional differences can be attributed to differences related to aerosols, while ozone and changes in methane lifetime make relatively small contributions. Emission reductions in a different sector (e.g. transportation instead of large-scale sources) might change this conclusion since the NOx to SO2 ratio in the emissions is significantly higher for transportation than for large-scale sources. The total climate effect of abatement measures thus depends on (i) which gases and aerosols are affected by the measure, (ii) the lifetime of the measure implemented, (iii) time horizon over which the effects are considered, and (iv) the chemical, physical and meteorological conditions in the region. There are important policy implications of the results. Equal effects of a measure cannot be assumed if the measure is implemented in a different region and if several gases are affected. Thus, the design of emission reduction measures should be considered thoroughly before implementation.  相似文献   

8.
This paper compares the results of the three state of the art climate-energy-economy models IMACLIM-R, ReMIND-R, and WITCH to assess the costs of climate change mitigation in scenarios in which the implementation of a global climate agreement is delayed or major emitters decide to participate in the agreement at a later stage only. We find that for stabilizing atmospheric GHG concentrations at 450?ppm CO2-only, postponing a global agreement to 2020 raises global mitigation costs by at least about half and a delay to 2030 renders ambitious climate targets infeasible to achieve. In the standard policy scenario??in which allocation of emission permits is aimed at equal per-capita levels in the year 2050??regions with above average emissions (such as the EU and the US alongside the rest of Annex-I countries) incur lower mitigation costs by taking early action, even if mitigation efforts in the rest of the world experience a delay. However, regions with low per-capita emissions which are net exporters of emission permits (such as India) can possibly benefit from higher future carbon prices resulting from a delay. We illustrate the economic mechanism behind these observations and analyze how (1) lock-in of carbon intensive infrastructure, (2) differences in global carbon prices, and (3) changes in reduction commitments resulting from delayed action influence mitigation costs.  相似文献   

9.
The global three-dimensional Lagrangian chemistry-transport model STOCHEM has been used to follow the changes in the tropospheric distributions of the two major radiatively-active trace gases, methane and tropospheric ozone, following the emission of pulses of the short-lived tropospheric ozone precursor species, methane, carbon monoxide, NOx and hydrogen. The radiative impacts of NOx emissionswere dependent on the location chosen for the emission pulse, whether at the surface or in the upper troposphere or whether in the northern or southern hemispheres. Global warming potentials were derived for each of the short-lived tropospheric ozone precursor species by integrating the methane and tropospheric ozone responses over a 100 year time horizon. Indirect radiative forcing due to methane and tropospheric ozone changes appear to be significant for all of the tropospheric ozone precursor species studied. Whereas the radiative forcing from methane changes is likely to be dominated by methane emissions, that from tropospheric ozone changes is controlled by all the tropospheric ozone precursor gases, particularly NOxemissions. The indirect radiative forcing impacts of tropospheric ozone changes may be large enough such that ozone precursors should be considered in the basket of trace gases through which policy-makers aim to combat global climate change.  相似文献   

10.
We describe results from a 57-member ensemble of transient climate change simulations, featuring simultaneous perturbations to 54 parameters in the atmosphere, ocean, sulphur cycle and terrestrial ecosystem components of an earth system model (ESM). These emissions-driven simulations are compared against the CMIP3 multi-model ensemble of physical climate system models, used extensively to inform previous assessments of regional climate change, and also against emissions-driven simulations from ESMs contributed to the CMIP5 archive. Members of our earth system perturbed parameter ensemble (ESPPE) are competitive with CMIP3 and CMIP5 models in their simulations of historical climate. In particular, they perform reasonably well in comparison with HadGEM2-ES, a more sophisticated and expensive earth system model contributed to CMIP5. The ESPPE therefore provides a computationally cost-effective tool to explore interactions between earth system processes. In response to a non-intervention emissions scenario, the ESPPE simulates distributions of future regional temperature change characterised by wide ranges, and warm shifts, compared to those of CMIP3 models. These differences partly reflect the uncertain influence of global carbon cycle feedbacks in the ESPPE. In addition, the regional effects of interactions between different earth system feedbacks, particularly involving physical and ecosystem processes, shift and widen the ESPPE spread in normalised patterns of surface temperature and precipitation change in many regions. Significant differences from CMIP3 also arise from the use of parametric perturbations (rather than a multimodel ensemble) to represent model uncertainties, and this is also the case when ESPPE results are compared against parallel emissions-driven simulations from CMIP5 ESMs. When driven by an aggressive mitigation scenario, the ESPPE and HadGEM2-ES reveal significant but uncertain impacts in limiting temperature increases during the second half of the twenty-first century. Emissions-driven simulations create scope for development of errors in properties that were previously prescribed in coupled ocean–atmosphere models, such as historical CO2 concentrations and vegetation distributions. In this context, historical intra-ensemble variations in the airborne fraction of CO2 emissions, and in summer soil moisture in northern hemisphere continental regions, are shown to be potentially useful constraints, subject to uncertainties in the relevant observations. Our results suggest that future climate-related risks can be assessed more comprehensively by updating projection methodologies to support formal combination of emissions-driven perturbed parameter and multi-model earth system model simulations with suitable observational constraints. This would provide scenarios underpinned by a more complete representation of the chain of uncertainties from anthropogenic emissions to future climate outcomes.  相似文献   

11.
本文首先对中国PM2.5和近地面臭氧浓度的观测进行了简要的综述;并利用2010-2013年全球对流层臭氧的卫星观测数据给出了对流层臭氧浓度在全球和中国地区的分布特征,其平均值分别为29.78 DU和33.97 DU。然后,利用一个气溶胶大气化学-全球气候双向耦合模式模拟了中国地区PM2.5的浓度分布和季节变化,其年平均值为0.51×10-8 kg/m3。在此基础上又分析了5种典型气溶胶对PM2.5总浓度在不同季节的贡献。结合IPCC第五次评估报告(AR5),讨论了气溶胶和温室气体及其前体物的排放与辐射强迫的联系,以及减排大气臭氧前体物和气溶胶颗粒物质(PM)对气候变化的可能影响。指出减排臭氧前体物对气候的影响还不完全清楚,对短寿命的温室气体和黑碳气溶胶的减排是一种短期(未来50年)的辅助措施;为了保证全球平均温度增长不超过2℃,减少二氧化碳的排放仍是我们需要坚持的长期战略。短期和长期的减排战略对于保护环境和减缓气候变化都是至关重要的。  相似文献   

12.
This study quantifies the Shared Socioeconomic Pathways (SSPs) using AIM/CGE (Asia-Pacific Integrated Assessment/Computable General Equilibrium). SSP3 (regional rivalry) forms the main focus of the study, which is supposed to face high challenges both in mitigation and adaptation. The AIM model has been selected as the model to quantify the SSP3 marker scenario, a representative case illustrating a particular narrative. Multiple parameter assumptions in AIM/CGE were differentiated across the SSPs for quantification. We confirm that SSP3 quantitative scenarios outcomes are consistent with its narrative. Moreover, four key features of SSP3 are observed. First, as SSP3 was originally designed to contain a high level of challenges to mitigation, mitigation costs in SSP3 were relatively high. This results from the combination of high greenhouse gas emissions in the baseline (no climate mitigation policy) scenario and low mitigative capacity. Second, the climate forcing level in 2100 for the baseline scenarios of SSP3 was similar to that of SSP2, whereas CO2 emissions in SSP3 are higher than those in SSP2. This is mainly due to high aerosol emissions in SSP3. A third feature was the high air pollutant emissions associated with weak implementation of air quality legislation and a high level of coal dependency. Fourth, forest area steadily decreases with a large expansion of cropland and pasture land. These characteristics indicate at least four potential uses for SSP3. First, SSP3 is useful for both IAM and impact, adaptation, vulnerability (IAV) analyses to present the worst-case scenario. Second, by comparing SSP2 and SSP3, IAV analyses can clarify the influences of socioeconomic elements under similar climatic conditions. Third, the high air pollutant emissions would be of interest to atmospheric chemistry climate modelers. Finally, in addition to climate change studies, many other environmental studies could benefit from the meaningful insights available from the large-scale land use change resulting in SSP3.  相似文献   

13.
The use of modern biomass for energy generation has been considered in many studies as a possible measure for reducing or stabilizing global carbon dioxide (CO2) emissions. In this paper we assess the impacts of large-scale global utilization of biomass on regional and grid scale land cover, greenhouse gas emissions, and carbon cycle. We have implemented in the global environmental change model IMAGE the LESS biomass intensive scenario, which was developed for the Second Assessment Report of IPCC. This scenario illustrates the potential for reducing energy related emission by different sets of fuel mixes and a higher energy efficiency. Our analysis especially covers different consequences involved with such modern biomass scenarios. We emphasize influences of CO2 concentrations and climate change on biomass crop yield, land use, competition between food and biomass crops, and the different interregional trade patterns for modern biomass based energy. Our simulations show that the original LESS scenario is rather optimistic on the land requirements for large-scale biomass plantations. Our simulations show that 797 Mha is required while the original LESS scenario is based on 550 Mha. Such expansion of agricultural land will influence deforestation patterns and have significant consequenses for environmental issues, such as biodiversity. Altering modern biomass requirements and the locations where they are grown in the scenario shows that the outcome is sensitive for regional emissions and feedbacks in the C cycle and that competition between food and modern biomass can be significant. We conclude that the cultivation of large quantities of modern biomass is feasible, but that its effectiveness to reduce emissions of greenhouse gases has to be evaluated in combination with many other environmental land use and socio-economic factors.  相似文献   

14.
The importance of sulfur dioxide emissions for climate change is now established, although substantial uncertainties remain. This paper presents projections for future sulfur dioxide emissions using the MiniCAM integrated assessment model. A new income-based parameterization for future sulfur dioxide emissions controls is developed based on purchasing power parity (PPP) income estimates and historical trends related to the implementation of sulfur emissions limitations. This parameterization is then used to produce sulfur dioxide emissions trajectories for the set of scenarios developed for the Special Report on Emission Scenarios (SRES). We use the SRES methodology to produce harmonized SRES scenarios using the latest version of the MiniCAM model. The implications, and requirements, for integrated assessment modeling of sulfur dioxide emissions are discussed. We find that sulfur emissions eventually decline over the next century under a wide set of assumptions. These emission reductions result from a combination of emission controls, the adoption of advanced electric technologies, and a shift away from the direct end use of coal with increasing income levels. Only under a scenario where incomes in developing regions increase slowly do global emission levels remain at close to present levels over the next century. Under a climate policy that limits emissions of carbon dioxide, sulfur dioxide emissions fall in a relatively narrow range. In most cases, the relative climatic effect of sulfur dioxide emissions decreases dramatically to a point where sulfur dioxide is only a minor component of climate forcing by the end of the century. Ecological effects of sulfur dioxide, however, could be significant in some developing regions for many decades to come.  相似文献   

15.
Exposure of plants to ozone inhibits photosynthesis and therefore reduces vegetation production and carbon sequestration. The reduced carbon storage would then require further reductions in fossil fuel emissions to meet a given CO2 concentration target, thereby increasing the cost of meeting the target. Simulations with the Terrestrial Ecosystem Model (TEM) for the historical period (1860–1995) show the largest damages occur in the Southeast and Midwestern regions of the United States, eastern Europe, and eastern China. The largest reductions in carbon storage for the period 1950–1995, 41%, occur in eastern Europe. Scenarios for the 21st century developed with the MIT Integrated Global Systems Model (IGSM) lead to even greater negative effects on carbon storage in the future. In some regions, current land carbon sinks become carbon sources, and this change leads to carbon sequestration decreases of up to 0.4 Pg C yr−1 due to damage in some regional ozone hot spots. With a climate policy, failing to consider the effects of ozone damage on carbon sequestration would raise the global costs over the next century of stabilizing atmospheric concentrations of CO2 equivalents at 550 ppm by 6 to 21%. Because stabilization at 550 ppm will reduce emission of other gases that cause ozone, these additional benefits are estimated to be between 5 and 25% of the cost of the climate policy. Tropospheric ozone effects on terrestrial ecosystems thus produce a surprisingly large feedback in estimating climate policy costs that, heretofore, has not been included in cost estimates.  相似文献   

16.
 The potential of aircraft-induced ozone changes to force a substantial climate impact is investigated by means of simulations with an atmospheric general circulation model, coupled to a mixed layer ocean model. We present results from several numerical experiments that are based on ozone change patterns for 1992 aviation and on a future scenario for the year 2015. In both cases, the climate signal is statistically significant. The strength of the ozone impact is of comparable magnitude to that arising from aircraft CO2 emissions, thus meaning a non-negligible contribution to the total climate effect of aviation emissions. There are indications of a characteristic signature of the aircraft ozone related temperature response pattern, distinctly different from that associated with the increase of well-mixed greenhouse gases. Likewise, the climate sensitivity to non-uniform ozone changes including a strong concentration perturbation at the tropopause may be higher than the climate sensitivity to uniform changes of a greenhouse gas. In a hierarchy of experiments, for which the spatial structure of an aircraft-related ozone perturbation was left fixed, while the amplitude of the perturbation was artificially increased, the climate signal depends in a non-linear way on the radiative forcing. Received: 10 September 1998 / Accepted: 4 May 1999  相似文献   

17.
A global three-dimensional chemical transport model has been used to identify and evaluate possible candidates for the `missing' surface source required to balance the atmospheric budget of methyl bromide. Both natural and anthropogenic emissions of methyl bromide are `coloured' in the model, thus allowing the global CH3Br distribution to be broken-down into its source components. These coloured CH3Br tracers are then combined in various ways to create one base-line emission scenario and five further plausible scenarios. The additional emission scenarios are specifically designed to test whether the geographical distribution and seasonal cycles of additional vegetation and/or increased biomass burning emissions are consistent with atmospheric observations of methyl bromide mixing ratios. Due to an imbalance in our current understanding of the methyl bromide budget, simulated CH3Br mixing ratios from the base-line emission scenario are significantly lower than atmospheric measurements. Both the inclusion of a vegetation source in the tropics and a double strength biomass burning source substantially improve the agreement between model simulations and atmospheric measurements compared with the base-line emission scenario. While measurement data provides useful information on global fluxes and regional CH3Br seasonal cycles, small differences between the simulated seasonal cycles of different emission scenarios makes it difficult to distinguish between the relative likelihoods of model scenarios containing a tropical vegetation source or an increased biomass burning source. Further measurements performed in continental mid-to-high northern latitudes, central-southern Africa and South America would be of particular benefit in future attempts to constrain the location and magnitude of the natural terrestrial sources of methyl bromide.  相似文献   

18.
Three online coupled chemical transport model simulations were analyzed for three summer months of 2015 in Poland. One of them was run with default emission inventory, the other two with NOx and VOC emissions reduced by 30%, respectively. Obtained ozone concentrations were evaluated with data from air quality measurement stations and ozone sensitivity to precursor emissions was estimated by ozone concentration differences between simulations and with the use of indicator ratios. They were calculated based on modeled mixing ratios of ozone, total reactive nitrogen and its components, nitric acid and hydrogen peroxide. The results show that the model overestimates ozone concentrations with the largest errors in the morning and evening, which is primarily related to the way vertical mixing is resolved by the model. Better model performance for ozone is achieved in rural than urban environment, as PBL and mixing mechanisms play more significant role in urban areas. Modeled ozone shows mixed sensitivity to precursor concentrations, similarly to other European regions, but indicator ratios have different values than are found in literature, particularly H2O2/HNO3 is larger than in southern Europe. However, indicator ratios often differ between locations and transition values need to be established individually for a given region.  相似文献   

19.
The objectives of the Framework Convention on Climate Change imply the conflicting constraints of minimising concentrations and maximising emissions (i.e. minimising emission restrictions). Carbon cycle models are readily used for ‘forward’ calculations of future CO2 given specified emissions and the ‘inverse’ problem of deducing the emissions required to achieve specified concentration profiles. However these approaches (a) are each geared to only one side of the problem; and (b) each requires the specification of a particular pathway in terms of either emissions or concentrations. These limitations can be avoided by analysing the relations between future emissions and concentrations of CO2 using a formalism that optimises over all possible future emission profiles, subject to relevant constraints on both emissions and concentrations. We present specific calculations indicating which combinations of upper bounds on concentrations and lower bounds on emissions are mutually inconsistent and which are consistent. We also calculate the (smaller) consistency regions that apply if emission reductions are restricted to less than 0.5% p.a. or less than 1% p.a. In each case, two reference periods (1990-2100 and 1990-2200) are considered.  相似文献   

20.
回顾了关于长距离输送对中国区域本底大气臭氧的影响,以及中国区域大气本底站臭氧变化及其区域代表性两方面的研究进展。来自不同污染源区O3的长距离输送对中国区域O3影响的研究结果分歧较大,贡献最显著的源区和受体地区也存在争议;同时,鲜有研究考虑到平流层对对流层的O3贡献,而这部分贡献在前体物排放很少的本底地区非常重要。中国区域各大气本底观测站分别与其周围一定范围内的区域具有相同的对流层O3柱浓度最大值月份分布,而对与人体健康密切相关的近地面O3区域特征的分析尚未深入开展;鉴于研究方法的局限性,也尚未深入揭示形成O3变化区域特征的复杂成因。基于现有研究进展和不足之处,如何利用全球大气化学-环流模式的示踪模拟结果,定量评估来自全球不同地区的O3对中国本底大气O3的影响,并进一步评估中国区域6个大气本底站近地面O3季节变化的区域代表性,是亟待解决的科学问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号