首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   80篇
  免费   1篇
地球物理   17篇
地质学   22篇
海洋学   42篇
  2020年   1篇
  2019年   1篇
  2017年   1篇
  2015年   1篇
  2013年   2篇
  2012年   1篇
  2011年   4篇
  2010年   3篇
  2009年   3篇
  2008年   4篇
  2007年   10篇
  2006年   3篇
  2005年   5篇
  2004年   3篇
  2003年   7篇
  2002年   6篇
  2001年   7篇
  2000年   5篇
  1998年   1篇
  1997年   3篇
  1996年   3篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
排序方式: 共有81条查询结果,搜索用时 15 毫秒
11.
This paper presents the applications of the differential evolution (DE) algorithm in back analysis of soil parameters for deep excavation problems. A computer code, named Python‐based DE, is developed and incorporated into the commercial finite element software ABAQUS, with a parallel computing technique to run an FE analysis for all trail vectors of one generation in DE in multiple cores of a cluster, which dramatically reduces the computational time. A synthetic case and a well‐instrumented real case, that is, the Taipei National Enterprise Center (TNEC) project, are used to demonstrate the capability of the proposed back‐analysis procedure. Results show that multiple soil parameters are well identified by back analysis using a DE optimization algorithm for highly nonlinear problems. For the synthetic excavation case, the back‐analyzed parameters are basically identical to the input parameters that are used to generate synthetic response of wall deflection. For the TNEC case with a total of nine parameters to be back analyzed, the relative errors of wall deflection for the last three stages are 2.2, 1.1, and 1.0%, respectively. Robustness of the back‐estimated parameters is further illustrated by a forward prediction. The wall deflection in the subsequent stages can be satisfactorily predicted using the back‐analyzed soil parameters at early stages. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
12.
Waves reflecting obliquely from structures establish short-crested waves which are conducive to scour of the bed adjacent to them. The pore pressures and effective stresses induced by this wave system are derived analytically for an unsaturated, anisotropic soil matrix of infinite depth in a three-dimensional domain. Verification is available by the solutions being readily reduced to the two-dimensional cases of the progressive and standing wave, for which some closed-form solutions are available. It is shown that wave obliquity is coupled with soil permeability. The effects of wave obliquity, relative water depth, soil stiffness and soil permeability on wave-induced pore pressure are discussed in detail.  相似文献   
13.
The groundwater response of coastal aquifers to tidal forcing is described by Laplace's equation coupled with the nonlinear phreatic-free surface boundary condition. Here we describe fluctuations in the water table using two small parameters, extending previous work by proposing an ansatz to compute higher order, semi-analytical solutions. The new solutions are compared with known lower order solutions. The relative difference between the linear solution and higher order solutions can reach up to 30% of the linear solution for shallow beaches. The new solutions exhibit a reduction in the over height of the groundwater fluctuations compared with the lower order solutions. In addition, the super elevation of the water table, both near shore and as the aquifer tends landward, is examined with the inclusion of higher order terms.  相似文献   
14.
A coupled model is developed to investigate the dynamic interaction between an offshore pile, a porous seabed and seawater when subjected to the pseudo-Stoneley wave along the seabed and the seawater interface. The pile and the seabed are treated as the porous medium governed by Biot's theory, while the seawater is considered as an acoustic medium and is described by the conventional Helmholtz equation. The free field solution of the incident pseudo-Stoneley wave is obtained using Biot's theory and the potential method. Based on the boundary element method (BEM) for the porous medium and the acoustic medium, three BEM formulations are constructed for the pile, the seabed and the seawater, respectively, which are combined together using the continuity conditions between the pile, the seabed and the seawater to formulate the coupled model for the system. As shown in numerical examples, when the system is subjected to the pseudo-Stoneley wave, the maximum pore pressure of the seabed usually occurs at the region near the interfaces between the seabed and the seawater.  相似文献   
15.
The subject of the wave–seabed–structure interaction is important for civil engineers regarding stability analysis of foundations for offshore installations. Most previous investigations have been concerned with such a problem in the vicinity of a simple structure such as a vertical wall. For more complicated structures such as a pipeline, the phenomenon of the wave–seabed–structure has not been fully understood. This paper proposes a finite-difference model in a curvilinear coordinate system to investigate the wave-induced seabed response in a porous seabed around a pipeline. Based on the present numerical model, mechanism of the wave-induced soil response is examined. Employing Mohr–Coulomb failure criterion, the wave-induced seabed instability is also estimated. The numerical results indicate the importance of the effect of pipeline on the seabed response.  相似文献   
16.
Wave-induced seabed instability in front of a breakwater   总被引:2,自引:0,他引:2  
D.S. Jeng 《Ocean Engineering》1997,24(10):887-917
The wave-induced soil response in a porous seabed has become an important factor for the stability of offshore facilities, because many marine structures may have failed due to seabed instability and concomitant subsidence. An analytical solution is presented for the wave-induced soil response under the action of a three-dimensional wave system. Based on this general solution, the mechanism of seabed instability is then investigated. The general solutions for pore pressure and effective stresses are readily reducible to two dimensions for progressive waves, and are compared to theoretical and experimental work available. Some dominant factors affecting the wave-induced seabed instability are discussed; including permeability, seabed thickness and degree of saturation.  相似文献   
17.
D.-S. Jeng  B.R. Seymour   《Ocean Engineering》2005,32(16):1747-1916
In this paper, the phenomenon of ocean waves propagating over a beach with variable water depth is re-examined. Based on the assumption of shallow water, a linearised shallow water equation is solved with an arbitrary beach profile. These irregular beach profiles form a set of partial differential equation with variable coefficient as the governing equation, which is the main obstacle in obtaining analytical solutions. In this paper, two families of beach profile are used as examples. A parametric study is conducted to investigate the influence of the beach profiles on the water surface elevation (η) and velocities (u).  相似文献   
18.
Physical modeling of untrenched submarine pipeline instability   总被引:1,自引:0,他引:1  
F. P. Gao  X. Y. Gu  D. S. Jeng   《Ocean Engineering》2003,30(10):1283-1304
Wave-induced instability of untrenched pipeline on sandy seabed is a ‘wave–soil–pipeline’ coupling dynamic problem. To explore the mechanism of the pipeline instability, the hydrodynamic loading with U-shaped oscillatory flow tunnel is adopted, which is quite different from the previous experiment system. Based on dimensional analysis, the critical conditions for pipeline instability are investigated by altering pipeline submerged weight, diameter, soil parameters, etc. Based on the experimental results, different linear relationships between Froude number (Fr) and non-dimensional pipeline weight (G) are obtained for two constraint conditions. Moreover, the effects of loading history on the pipeline stability are also studied. Unlike previous experiments, sand scouring during the process of pipe’s losing stability is detected in the present experiments. In addition, the experiment results are compared with the previous experiments, based on Wake II model for the calculation of wave-induced forces upon pipeline. It shows that the results of two kinds of experiments are comparable, but the present experiments provide better physical insight of the wave–soil–pipeline coupling effects.  相似文献   
19.
The interaction between wave, seabed and marine structure is a vital issue in coastal engineering, as well as marine geotechnical engineering. However, most previous investigations have been focused on the wave forces acting on the structure from the aspect of hydrodynamics. In this study, we will examine the problem of wave-seabed-caisson interaction from the aspect of marine geotechnical engineering. Based on Biot's poro-elastic theory (Biot, M.A., 1941. General theory of three-dimensional consolidation. Journal of Applied Physics 12, 155–164), a two-dimensional finite element model is proposed to investigate the wave-induced soil response in the vicinity of a caisson. Based on the numerical model, the water wave driven pore pressure around a caisson will be examined through a parametric analysis.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号