首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   540篇
  免费   29篇
  国内免费   2篇
测绘学   28篇
大气科学   96篇
地球物理   122篇
地质学   215篇
海洋学   27篇
天文学   44篇
综合类   3篇
自然地理   36篇
  2023年   2篇
  2022年   4篇
  2021年   8篇
  2020年   12篇
  2019年   9篇
  2018年   24篇
  2017年   29篇
  2016年   36篇
  2015年   21篇
  2014年   18篇
  2013年   33篇
  2012年   31篇
  2011年   34篇
  2010年   35篇
  2009年   36篇
  2008年   31篇
  2007年   27篇
  2006年   22篇
  2005年   22篇
  2004年   12篇
  2003年   9篇
  2002年   18篇
  2001年   15篇
  2000年   3篇
  1999年   6篇
  1998年   3篇
  1997年   8篇
  1996年   4篇
  1995年   7篇
  1994年   7篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1988年   3篇
  1987年   3篇
  1984年   2篇
  1982年   2篇
  1981年   3篇
  1978年   2篇
  1977年   6篇
  1970年   1篇
  1969年   1篇
  1965年   1篇
  1961年   1篇
  1960年   1篇
  1958年   1篇
  1953年   1篇
  1951年   1篇
  1950年   1篇
  1948年   1篇
排序方式: 共有571条查询结果,搜索用时 31 毫秒
31.
32.
International Journal of Earth Sciences - The Polish Lowlands, located southwest of the Teisseyre–Tornquist Zone, within Trans-European Suture Zone, were affected by bimodal, but dominantly...  相似文献   
33.
Upscaling permeability of grid blocks is crucial for groundwater models. A novel upscaling method for three-dimensional fractured porous rocks is presented. The objective of the study was to compare this method with the commonly used Oda upscaling method and the volume averaging method. First, the multiple boundary method and its computational framework were defined for three-dimensional stochastic fracture networks. Then, the different upscaling methods were compared for a set of rotated fractures, for tortuous fractures, and for two discrete fracture networks. The results computed by the multiple boundary method are comparable with those of the other two methods and fit best the analytical solution for a set of rotated fractures. The errors in flow rate of the equivalent fracture model decrease when using the multiple boundary method. Furthermore, the errors of the equivalent fracture models increase from well-connected fracture networks to poorly connected ones. Finally, the diagonal components of the equivalent permeability tensors tend to follow a normal or log-normal distribution for the well-connected fracture network model with infinite fracture size. By contrast, they exhibit a power-law distribution for the poorly connected fracture network with multiple scale fractures. The study demonstrates the accuracy and the flexibility of the multiple boundary upscaling concept. This makes it attractive for being incorporated into any existing flow-based upscaling procedures, which helps in reducing the uncertainty of groundwater models.  相似文献   
34.
Like almost all fields of science, hydrology has benefited to a large extent from the tremendous improvements in scientific instruments that are able to collect long-time data series and an increase in available computational power and storage capabilities over the last decades. Many model applications and statistical analyses (e.g., extreme value analysis) are based on these time series. Consequently, the quality and the completeness of these time series are essential. Preprocessing of raw data sets by filling data gaps is thus a necessary procedure. Several interpolation techniques with different complexity are available ranging from rather simple to extremely challenging approaches. In this paper, various imputation methods available to the hydrological researchers are reviewed with regard to their suitability for filling gaps in the context of solving hydrological questions. The methodological approaches include arithmetic mean imputation, principal component analysis, regression-based methods and multiple imputation methods. In particular, autoregressive conditional heteroscedasticity (ARCH) models which originate from finance and econometrics will be discussed regarding their applicability to data series characterized by non-constant volatility and heteroscedasticity in hydrological contexts. The review shows that methodological advances driven by other fields of research bear relevance for a more intensive use of these methods in hydrology. Up to now, the hydrological community has paid little attention to the imputation ability of time series models in general and ARCH models in particular.  相似文献   
35.
The three-dimensional high-resolution imaging of rock samples is the basis for pore-scale characterization of reservoirs. Micro X-ray computed tomography (µ-CT) is considered the most direct means of obtaining the three-dimensional inner structure of porous media without deconstruction. The micrometer resolution of µ-CT, however, limits its application in the detection of small structures such as nanochannels, which are critical for fluid transportation. An effective strategy for solving this problem is applying numerical reconstruction methods to improve the resolution of the µ-CT images. In this paper, a convolutional neural network reconstruction method is introduced to reconstruct high-resolution porous structures based on low-resolution µ-CT images and high-resolution scanning electron microscope (SEM) images. The proposed method involves four steps. First, a three-dimensional low-resolution tomographic image of a rock sample is obtained by µ-CT scanning. Next, one or more sections in the rock sample are selected for scanning by SEM to obtain high-resolution two-dimensional images. The high-resolution segmented SEM images and their corresponding low-resolution µ-CT slices are then applied to train a convolutional neural network (CNN) model. Finally, the trained CNN model is used to reconstruct the entire low-resolution three-dimensional µ-CT image. Because the SEM images are segmented and have a higher resolution than the µ-CT image, this algorithm integrates the super-resolution and segmentation processes. The input data are low-resolution µ-CT images, and the output data are high-resolution segmented porous structures. The experimental results show that the proposed method can achieve state-of-the-art performance.  相似文献   
36.

Within the Ararat Valley (Armenia), a continuously growing water demand (for irrigation and fish farming) and a simultaneous decline in groundwater recharge (due to climate change) result in increasing stress on the local groundwater resources. This detrimental development is reflected by groundwater-level drops and an associated reduction of the area with artesian conditions in the valley centre. This situation calls for increasing efforts aimed at more sustainable water resources management. The aim of this baseline study was the collection of data that allows for study on the origin and age distribution of the Ararat Valley groundwater based on environmental tracers, namely stable (δ2H, δ18O) and radioactive (35S, 3H) isotopes, as well as physical-chemical indicators. The results show that the Ararat Valley receives modern recharge, despite its (semi-)arid climate. While subannual groundwater residence times could be disproved (35S), the detected 3H pattern suggests groundwater ages of several decades, with the oldest waters being recharged around 60 years ago. The differing groundwater ages are reflected by varying scatter of stable isotope and hydrochemical signatures. The presence of young groundwater (i.e., younger that the 1970s), some containing nitrate, indicates groundwater vulnerability and underscores the importance of increased efforts to achieve sustainable management of this natural resource. Since stable isotope signatures indicate the recharge areas to be located in the mountains surrounding the valley, these efforts must not be limited to the central part of the valley where most of the abstraction wells are located.

  相似文献   
37.
Variations in clay mineral composition of sediment cores from the margin and continental slope of the Sunda Shelf (southern South China Sea, SE Asia) covering the past 17,000 yr reflect changing influences of sediment sources together with clay mineral partitioning processes in shallow waters. We identify the deglacial sea level rise as the principal factor driving these changes. During the late glacial, high values of kaolinite are interpreted to reflect a higher contribution of clays from soils that have formed on the exposed Sunda Shelf and in the southern archipelagos of Indonesia. At this time core sites were located in close proximity to the mouths of the Sunda Shelf palaeo-drainage systems on the emerged shelf (“Sundaland”). The progressive landward displacement of the coastline and breakdown of these vast drainage systems during deglaciation led to a decrease in influence of the kaolinite-rich southern sources. When the coastline had retreated closely to its present-day position in mid-Holocene times, the former dominance of southern sources was replaced by a stronger influence of illite-rich sources (e.g. Borneo). The overriding control of sea level changes on the clay mineral distribution patterns precludes a definite climatic interpretation of clay mineral data in terms of climatic/monsoonal changes in such highly dynamic sedimentary environment.  相似文献   
38.
Most marine organisms are characterized by at least one planktonic phase during their life history, potentially allowing interconnection of populations separated by several hundred kilometers. For many years, the idea that marine species are genetically homogenous throughout their range of distribution, due to passive larval transport, has been a paradigm. Nowadays, a growing number of studies underline the existence of boundaries in the marine realm and highlight how larval dispersal is a complex process depending on biotic as well as abiotic factors. Marine fragmented habitats, such as atolls, mangroves and estuaries, are optimal systems for investigating the marine dispersion process under a metapopulation approach, since populations can be geographically defined a priori as opposed to those occupying open marine environments. Within this frame, the present paper investigates the population genetic structure and the demographic history of the mangrove crab Neosarmatium meinerti within the western Indian Ocean by partial sequences of the mitochondrial DNA cytochrome oxidase subunit I. A total of 167 specimens were sampled from six mangrove sites distributed along the East African coast, from Kenya to South Africa, also including a mangrove forest located on Mahé Island, Seychelles. A sharp genetic break between the mainland and the Seychelles is recorded, revealing the existence of two historically distinct groups that can be defined as independent evolutionary units. Gene flow along the East African coast appears to be high enough to form a single metapopulation, probably by means of stepping stone populations. Otherwise, this mainland metapopulation is currently under expansion through a gradual moving front from the subtropical toward the equatorial populations.  相似文献   
39.
Understanding transpiration and plant physiological responses to environmental conditions is crucial for the design and management of vegetated engineered covers. Engineered covers rely on sustained transpiration to reduce the risk of deep drainage into potentially hazardous wastes, thereby minimizing contamination of water resources. This study quantified temporal trends of plant water potential (ψp), stomatal conductance (gs), and transpiration in a 4‐year‐old evergreen woody vegetation growing on an artificial sandy substrate at a mine waste disposal facility. Transpiration averaged 0.7 mm day?1 in winter, when rainfall was frequent, but declined to 0.2 mm day?1 in the dry summer, when the plants were quite stressed. In winter, the mean ψp was ?0.6 MPa at predawn and ?1.5 MPa at midday, which were much higher than the corresponding summer values of ?2.0 MPa and ?4.8 MPa, respectively. The gs was also higher in winter (72.1–95.0 mmol m?2 s?1) than in summer (<30 mmol m?2 s?1), and negatively correlated with ψp (p < 0.05, r2 = 0.71–0.75), indicating strong stomatal control of transpiration in response to moisture stress. Total annual transpiration (147.2 mm) accounted for only 22% of the annual rainfall (673 mm), compared with 77% to 99% for woody vegetation in Western Australia. The low annual transpiration was attributed to the collective effects of a sparse and young vegetation, low moisture retention of the sandy substrate, and a superficial root system constrained by high subsoil pH. Amending the substrate with fine‐textured materials should improve water storage of the substrate and enhance canopy growth and deep rooting, while further reducing the risk of deep drainage during the early stages of vegetation establishment and in the long term. Overall, this study highlights the need to understand substrate properties, vegetation characteristics, and rainfall patterns when designing artificial ecosystems to achieve specific hydrological functions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号