首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2567篇
  免费   73篇
  国内免费   68篇
测绘学   70篇
大气科学   430篇
地球物理   580篇
地质学   652篇
海洋学   636篇
天文学   195篇
综合类   38篇
自然地理   107篇
  2024年   2篇
  2023年   7篇
  2022年   27篇
  2021年   40篇
  2020年   47篇
  2019年   53篇
  2018年   123篇
  2017年   119篇
  2016年   174篇
  2015年   86篇
  2014年   166篇
  2013年   227篇
  2012年   117篇
  2011年   156篇
  2010年   154篇
  2009年   159篇
  2008年   143篇
  2007年   139篇
  2006年   108篇
  2005年   105篇
  2004年   107篇
  2003年   70篇
  2002年   57篇
  2001年   50篇
  2000年   35篇
  1999年   36篇
  1998年   23篇
  1997年   19篇
  1996年   14篇
  1995年   10篇
  1994年   8篇
  1993年   9篇
  1992年   8篇
  1991年   11篇
  1990年   11篇
  1989年   6篇
  1988年   5篇
  1987年   10篇
  1986年   8篇
  1985年   10篇
  1984年   8篇
  1983年   3篇
  1982年   13篇
  1981年   2篇
  1980年   8篇
  1979年   3篇
  1973年   2篇
  1972年   4篇
  1968年   1篇
  1964年   1篇
排序方式: 共有2708条查询结果,搜索用时 125 毫秒
941.
Geotechnical investigation projects in Korea produced data on the in situ modulus of deformation of rock masses (E M) measured with the borehole test, rock mass rating (RMR), and Q-system. The modulus of deformation of rock masses was correlated with the degree of weathering, RMR, and Q values. Determination of E M for each degree of weathering allows for the results to be used to classify the degree of weathering or to predict E M. The relation between E M and RMR is represented by $ E_{\text{M}} = 10^{{\frac{{{\text{RMR}} - 16}}{50}}} $ , which returns values 2–3 times lower than those reported in previous studies. Despite scatter in the values, due to larger dataset used in this study, the proposed equation may be used to predict the in situ modulus of deformation from RMR values. In addition, the relation between modulus of deformation and Q values is $ E_{\text{M}} = 10^{{0.32{ \log }Q + 0.585}} $ .  相似文献   
942.
Metamorphic K-feldspar was found in the low-grade pelitic rocks from the Ogcheon metamorphic belt in South Korea. It occurs as extremely fine-grained crystals (5-15 mm in width and 15-25 mm in length) closely associated with fine-grained muscovite and biotite. Their micro structural relations by X-ray mapping analyses using an electron-probe microanalyzer strongly suggest that K-feldspar has grown directly from the matrix phases as a stable phase coexisting with muscovite and biotite during the Ogcheon metamorphism. The phengite component in muscovite indicates about 4.2 kbar at 400°C, suggesting intermediate P/T type of metamorphism. Muscovite separates of two size fractions, 2-4 and 4-8 mm, give K-Ar ages of 153.4±3.3 and 156.7±3.4 Ma, respectively. The biotite separate is 156.5±3.3 Ma in age. Coarse-grained biotite crystal (ca. 0.5 mm) often occurs and it was analyzed by 40Ar/39Ar method using a laser probe step heating technique. It gives a plateau age of 158.2±0.5 Ma that is the same as the K-Ar muscovite and biotite ages. These data, including the previous works, suggest that intermediate P/T type of Ogcheon metamorphic belt exhumed in Middle Jurassic with the dextral strike-slip fault movement.  相似文献   
943.
Pores can be exploited for the understanding of the interaction between small-scale vertical magnetic field and the surrounding convective motions as well as the transport of mechanical energy into the chromosphere along the magnetic field. For better understanding of the physics of pores, we investigate tiny pores in a new emerging active region (AR11117) that were observed on 26 October 2010 by the Solar Optical Telescope (SOT) on board Hinode and the Fast Imaging Solar Spectrograph (FISS) of the 1.6 meter New Solar Telescope (NST). The pores are compared with nearby small magnetic concentrations (SMCs), which have similar magnetic flux as the pores but do not appear dark. Magnetic flux density and Doppler velocities in the photosphere are estimated by applying the center-of-gravity method to the Hinode/Spectro-Polarimeter data. The line-of-sight motions in the lower chromosphere are determined by applying the bisector method to the wings of the Hα and the Ca?ii 8542 Å line simultaneously taken by the FISS. The coordinated observation reveals that the pores are filled with plasma which moves down slowly and are surrounded by stronger downflow in the photosphere. In the lower chromosphere, we found that the plasma flows upwards inside the pores while the plasma in the SMCs is always moving down. Our inspection of the Ca?ii 8542 Å line from the wing to the core shows that the upflow in the pores slows down with height and turns into downflow in the upper chromosphere while the downflow in the SMCs gains its speed. Our results are in agreement with the numerical studies which suggest that rapid cooling of the interior of the pores drives a strong downflow, which collides with the dense lower layer below and rebounds into an upflow.  相似文献   
944.
We observed solar prominences with the Fast Imaging Solar Spectrograph (FISS) at the Big Bear Solar Observatory on 30 June 2010 and 15 August 2011. To determine the temperature of the prominence material, we applied a nonlinear least-squares fitting of the radiative transfer model. From the Doppler broadening of the Hα and Ca ii lines, we determined the temperature and nonthermal velocity separately. The ranges of temperature and nonthermal velocity were 4000?–?20?000 K and 4?–?11 km?s?1. We also found that the temperature varied much from point to point within one prominence.  相似文献   
945.
Halo coronal mass ejections (HCMEs) are a major cause of geomagnetic storms, hence their three-dimensional structures are important for space weather. We compare three cone models: an elliptical-cone model, an ice-cream-cone model, and an asymmetric-cone model. These models allow us to determine three-dimensional parameters of HCMEs such as radial speed, angular width, and the angle [γ] between sky plane and cone axis. We compare these parameters obtained from three models using 62 HCMEs observed by SOHO/LASCO from 2001 to 2002. Then we obtain the root-mean-square (RMS) error between the highest measured projection speeds and their calculated projection speeds from the cone models. As a result, we find that the radial speeds obtained from the models are well correlated with one another (R > 0.8). The correlation coefficients between angular widths range from 0.1 to 0.48 and those between γ-values range from ?0.08 to 0.47, which is much smaller than expected. The reason may be the different assumptions and methods. The RMS errors between the highest measured projection speeds and the highest estimated projection speeds of the elliptical-cone model, the ice-cream-cone model, and the asymmetric-cone model are 376 km?s?1, 169 km?s?1, and 152 km?s?1. We obtain the correlation coefficients between the location from the models and the flare location (R > 0.45). Finally, we discuss strengths and weaknesses of these models in terms of space-weather application.  相似文献   
946.
The requirements for the production of a near Infra-Red Guide Star Catalog (IRGSC) for Thirty Meter Telescope (TMT) observations are identified and presented. A methodology to compute the expected J band magnitude of stellar sources from their optical (g, r, i) magnitudes is developed. The computed and observed J magnitudes of sources in three test fields are compared and the methodology developed is found to be satisfactory for the magnitude range, JVega = 16–22 mag. From this analysis, we found that for the production of final TMT IRGSC (with a limiting magnitude of JVega = 22 mag), we need g, r, i bands optical data which go up to i AB ~ 23 mag. Fine tuning of the methodology developed, such as using Spectral Energy Distribution (SED) template fitting for optimal classification of stars in the fainter end, incorporating spectral libraries in the model, to reduce the scatter, and modification of the existing colour–temperature relation to increase the source density are planned for the subsequent phase of this work.  相似文献   
947.
L.A. Sromovsky  P.M. Fry  J.H. Kim 《Icarus》2011,215(1):292-312
Lindal et al. (Lindal, G.F., Lyons, J.R., Sweetnam, D.N., Eshleman, V.R., Hinson, D.P. [1987]. J. Geophys. Res. 92 (11), 14987-15001) presented a range of temperature and methane profiles for Uranus that were consistent with 1986 Voyager radio occultation measurements of refractivity versus altitude. A localized refractivity slope variation near 1.2 bars was interpreted to be the result of a condensed methane cloud layer. However, models fit to near-IR spectra found particle concentrations much deeper in the atmosphere, in the 1.5-3 bar range (Sromovsky, L.A., Irwin, P.G.J., Fry, P.M. [2006]. Icarus 182, 577-593; Sromovsky, L.A., Fry, P.M. [2010]. Icarus 210, 211-229; Irwin, P.G.J., Teanby, N.A., Davis, G.R. [2010]. Icarus 208, 913-926), and a recent analysis of STIS spectra argued for a model in which aerosol particles formed diffusely distributed hazes, with no compact condensation layer (Karkoschka, E., Tomasko, M. [2009]. Icarus 202, 287-309). To try to reconcile these results, we reanalyzed the occultation observations with the He volume mixing ratio reduced from 0.15 to 0.116, which is near the edge of the 0.033 uncertainty range given by Conrath et al. (Conrath, B., Hanel, R., Gautier, D., Marten, A., Lindal, G. [1987]. J. Geophys. Res. 92 (11), 15003-15010). This allowed us to obtain saturated mixing ratios within the putative cloud layer and to reach above-cloud and deep methane mixing ratios compatible with STIS spectral constraints. Using a 5-layer vertical aerosol model with two compact cloud layers in the 1-3 bar region, we find that the best fit pressure for the upper compact layer is virtually identical to the pressure range inferred from the occultation analysis for a methane mixing ratio near 4% at 5°S. This strongly argues that Uranus does indeed have a compact methane cloud layer. In addition, our cloud model can fit the latitudinal variations in spectra between 30°S and 20°N, using the same profiles of temperature and methane mixing ratio. But closer to the pole, the model fails to provide accurate fits without introducing an increasingly strong upper tropospheric depletion of methane at increased latitudes, in rough agreement with the trend identified by Karkoschka and Tomasko (Karkoschka, E., Tomasko, M. [2009]. Icarus 202, 287-309).  相似文献   
948.
Recently, an unidentified 3.3-3.4 μm feature found in the solar occultation spectra of the atmosphere of Titan observed by Cassini/VIMS was tentatively attributed to the C-H stretching mode of aliphatic hydrocarbon chains attached to large organic molecules, but without properly extracting the feature from adjacent influences of strong CH4 and weak C2H6 absorptions (Bellucci et al., 2009). In this work, we retrieve the detailed spectral feature using a radiative transfer program including absorption and fluorescent emission of both molecules, as well as absorption and scattering by haze particles. The spectral features of the haze retrieved from the VIMS data at various altitudes are similar to each other, indicating relatively uniform spectral properties of the haze with altitude. However, slight deviations observed near 127 km and above 300 km suggest inhomogeneity at these altitudes. We find that the positions of the major spectral peaks occur at 3.33-3.37 μm, which are somewhat different from the typical 3.3 μm aromatic or 3.4 μm aliphatic C-H stretches usually seen in the spectra of dust particles of the interstellar medium and comets. The peaks, however, coincide with those of the solid state spectra of C2H6, CH4, and CH3CN; and a broad shoulder from 3.37 to 3.50 μm coincides with those of C5H12 and C6H12 as well as those of typical aliphatic C-H stretches. This result combined with high-altitude (∼1000 km) haze formation process recently reported by Waite et al. (2007) opens a new question on the chemical composition of the haze particles. We discuss the possibility that the 3 μm feature may be due to the solid state absorption bands of these molecules (or some other molecules) and we advocate additional laboratory measurements for the ices of hydrocarbon and nitrogen-bearing molecules present in Titan's atmosphere for the identification of this 3 μm feature.  相似文献   
949.
At an energy scale of 1015-1016 eV, a direct measurement of the energy carried by charged cosmic radiation is a real challenge for balloon-borne and space based instruments. As a consequence of the very small fluxes, a large collecting power is required which is difficult to accommodate with weight-limited instruments equipped with calorimeters. A different approach has been proposed that might allow for a sizeable reduction of the instrument mass. It is based on a kinematical technique, whereby the energy of the cosmic-ray is estimated on the basis of the measured angular distribution of the secondaries resulting from its interaction in a target. In this paper, we review the basic principles of the method and study the properties of different energy estimators by means of a full simulation of the interaction of the incident particle in a conceptual instrument. We also discuss the intrinsic limitations of the method and investigate its possible application to direct measurements of the cosmic-ray spectrum in the region of the ‘knee’.  相似文献   
950.
Observation of a storm approaching from the ocean to the in-land area is very important for the flood forecasting. Radar is generally used for this purpose. However, as rain gauges are mostly located within the in-land area, detection of the mean-field bias of radar rain rate cannot be easily made. This problem is obviously different from that with evenly-spaced rain gauges over the radar umbrella. This study investigated the detection problem of mean-field bias of radar rain rate when rain gauges are available within a small portion of radar umbrella. To exactly determine the mean-field bias, i.e. the difference between the radar rain rate and the rain gauge rain rate, the variance of the difference between two observations must be small; thus, a sufficient number of observations are indispensable. Therefore, the problem becomes determining the number of rain gauges that will satisfy the given accuracy, that being the variance of the difference between two observations. The dimensionless error variance derived by dividing the expected value of the error variance by the variance of the areal average rain rate was introduced as a criteria to effectively detect the mean field bias. Here, the variance of the areal average rain rate was assumed to be the climatological one and the expectation for the error variance could be changed depending one the sampling characteristics. As an example, this study evaluated the rainfall observation over the East Sea by the Donghae radar. About 6.8 % of the entire radar umbrella covered in-land areas, where the rain gauges were available. It was found that, to limit the dimensionless error variance to 2 %, a total of 26 rain gauges are required for the entire radar umbrella; whereas, a total of 24 rain gauges would be required within the in-land area with available for the rain gauge data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号